PACO: Python-Based Atmospheric Correction

The atmospheric correction of satellite images based on radiative transfer calculations is a prerequisite for many remote sensing applications. The software package ATCOR, developed at the German Aerospace Center (DLR), is a versatile atmospheric correction software, capable of processing data acquired by many different optical satellite sensors. Based on this well established algorithm, a new Python-based atmospheric correction software has been developed to generate L2A products of Sentinel-2, Landsat-8, and of new space-based hyperspectral sensors such as DESIS (DLR Earth Sensing Imaging Spectrometer) and EnMAP (Environmental Mapping and Analysis Program). This paper outlines the underlying algorithms of PACO, and presents the validation results by comparing L2A products generated from Sentinel-2 L1C images with in situ (AERONET and RadCalNet) data within VNIR-SWIR spectral wavelengths range.

[1]  C. Justice,et al.  The Harmonized Landsat and Sentinel-2 surface reflectance data set , 2018, Remote Sensing of Environment.

[2]  Kenton Lee,et al.  The Spectral Response of the Landsat-8 Operational Land Imager , 2014, Remote. Sens..

[3]  R. Richter A fast atmospheric correction algorithm applied to Landsat TM images , 1990 .

[4]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  Maria João Costa,et al.  Validation of ESA Sentinel-2 L2A Aerosol Optical Thickness and Columnar Water Vapour during 2017-2018 , 2019, Remote. Sens..

[6]  Neil Flood,et al.  An Operational Scheme for Deriving Standardised Surface Reflectance from Landsat TM/ETM+ and SPOT HRG Imagery for Eastern Australia , 2013, Remote. Sens..

[7]  Daniel Schläpfer,et al.  Correction of cirrus effects in Sentinel-2 type of imagery , 2011 .

[8]  Daniel Schläpfer,et al.  APDA Water Vapor Retrieval Validation for Sentinel-2 Imagery , 2017, IEEE Geoscience and Remote Sensing Letters.

[9]  Rudolf Richter,et al.  Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS) , 2019, Sensors.

[10]  S. Adler-Golden,et al.  Atmospheric Compensation of Hyperspectral Data: An Overview and Review of In-Scene and Physics-Based Approaches , 2019, IEEE Geoscience and Remote Sensing Magazine.

[11]  Craig J. Miller,et al.  Performance assessment of ACORN atmospheric correction algorithm , 2002, SPIE Defense + Commercial Sensing.

[12]  Patrick Hostert,et al.  The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation , 2015, Remote. Sens..

[13]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[14]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[15]  Olivier Hagolle,et al.  MACCS-ATCOR joint algorithm (MAJA) , 2016, Remote Sensing.

[16]  David R. Thompson,et al.  Retrieval of Atmospheric Parameters and Surface Reflectance from Visible and Shortwave Infrared Imaging Spectroscopy Data , 2018, Surveys in Geophysics.

[17]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[18]  Daniel Schläpfer,et al.  An automatic atmospheric correction algorithm for visible/NIR imagery , 2006 .

[19]  Ferran Gascon,et al.  Sentinel-2 Global Surface Reflectance Level-2a Product Generated with Sen2Cor , 2019, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.

[20]  Gérard Dedieu,et al.  A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images , 2015, Remote. Sens..

[21]  Agnieszka Bialek,et al.  RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range , 2019, Remote. Sens..

[22]  Robert E. Wolfe,et al.  A 30+ year AVHRR Land Surface Reflectance Climate Data Record and its application to wheat yield monitoring , 2017, Remote. Sens..

[23]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[24]  Zheng Qu,et al.  The High Accuracy Atmospheric Correction for Hyperspectral Data (HATCH) model , 2003, IEEE Trans. Geosci. Remote. Sens..

[25]  Daniel Schläpfer,et al.  Operational Atmospheric Correction for Imaging Spectrometers Accounting for the Smile Effect , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Stefan Adriaensen,et al.  Atmospheric Correction Inter-comparison eXercise , 2018, Remote. Sens..

[27]  Juan M. Fontenla,et al.  High‐resolution solar spectral irradiance from extreme ultraviolet to far infrared , 2011 .

[28]  Daniel Schläpfer,et al.  Correction of ozone influence on TOA radiance , 2014 .

[29]  Andreas Müller,et al.  Influence of the Adjacency Effect on Ground Reflectance Measurements , 2006, IEEE Geoscience and Remote Sensing Letters.

[30]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[31]  Lawrence S. Bernstein,et al.  Quick atmospheric correction (QUAC) code for VNIR-SWIR spectral imagery: Algorithm details , 2012, 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS).

[32]  Daniel Schläpfer,et al.  Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor , 1998 .

[33]  C. Justice,et al.  Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation , 1997 .

[34]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[35]  M. Hahn,et al.  INTEGRATION OF SENTINEL-2 AND LANDSAT-8 DATA FOR SURFACE REFLECTANCE TIME-SERIES ANALYSIS , 2019, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[36]  Rudolf Richter,et al.  Validation of aerosol estimation in atmospheric correction algorithm ATCOR , 2015 .

[37]  Z. Ahmad,et al.  Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. , 2000, Applied optics.