Elastic-net regularization: error estimates and active set methods
暂无分享,去创建一个
[1] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[2] Lorenzo Rosasco,et al. Elastic-net regularization in learning theory , 2008, J. Complex..
[3] O. Scherzer,et al. Sparse regularization with lq penalty term , 2008, 0806.3222.
[4] Stephen J. Wright,et al. Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.
[5] Dirk A. Lorenz,et al. Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints , 2008, SIAM J. Sci. Comput..
[6] D. Lorenz,et al. Convergence rates and source conditions for Tikhonov regularization with sparsity constraints , 2008, 0801.1774.
[7] Mário A. T. Figueiredo,et al. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.
[8] Per Christian Hansen,et al. Regularization Tools version 4.0 for Matlab 7.3 , 2007, Numerical Algorithms.
[9] I. Loris. On the performance of algorithms for the minimization of ℓ1-penalized functionals , 2007, 0710.4082.
[10] D. Lorenz,et al. A semismooth Newton method for Tikhonov functionals with sparsity constraints , 2007, 0709.3186.
[11] K. Bredies,et al. Linear Convergence of Iterative Soft-Thresholding , 2007, 0709.1598.
[12] Rajat Raina,et al. Efficient sparse coding algorithms , 2006, NIPS.
[13] A. Ramm. A symmetry problem , 2004, math/0411175.
[14] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[15] S. Osher,et al. Convergence rates of convex variational regularization , 2004 .
[16] Robert D. Nowak,et al. An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..
[17] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[18] Michael Ulbrich,et al. Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..
[19] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[20] Xiaojun Chen,et al. Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..
[21] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[22] Lea Fleischer,et al. Regularization of Inverse Problems , 1996 .
[23] Kazufumi Ito,et al. On the Choice of the Regularization Parameter in Nonlinear Inverse Problems , 1992, SIAM J. Optim..
[24] S. Levy,et al. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .
[25] Thomas Bonesky. Morozov's discrepancy principle and Tikhonov-type functionals , 2008 .
[26] O. Scherzer,et al. FA ] 2 9 Ju l 2 00 8 Sparse Regularization with l q Penalty Term , 2008 .
[27] Ivan P. Gavrilyuk,et al. Variational analysis in Sobolev and BV spaces , 2007, Math. Comput..
[28] S. Osher,et al. Convergence rates of convex variational regularization , 2004 .
[29] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[30] H. L. Taylor,et al. Deconvolution with the l 1 norm , 1979 .