Length of state cycles of random Boolean networks: an analytic study

In this paper we consider the mean length of transients and the length of state cycles in random Boolean networks. We present an approximate calculation of these quantities as a function of the size and connectivity of the network, where using an annealed approximation we derive a recursive formula for the length of steps of the system. Using the mean step length and an `effective momentary' state space, we calculate an approximate formula for the probability distribution function (PDF) of the length of state cycles and transients. We compare this PDF with analytical results in special cases and with simulations by the Monte Carlo procedure.

[1]  Ricard V. Solé,et al.  PHASE TRANSITIONS IN RANDOM NETWORKS : SIMPLE ANALYTIC DETERMINATION OF CRITICAL POINTS , 1997 .

[2]  L. Glass,et al.  Ordered and disordered dynamics in random networks , 1998 .

[3]  Henrik Flyvbjerg,et al.  Exact solution of Kauffman's model with connectivity one , 1988 .

[4]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[5]  Bernard Derrida,et al.  Valleys and overlaps in Kauffman's model , 1987 .

[6]  K. E. Kürten Dynamical phase transitions in short-ranged and long-ranged neural network models , 1989 .

[7]  L. Schulman,et al.  Percolation and Galaxies , 1986, Science.

[8]  H. Atlan Self creation of meaning , 1987 .

[9]  K. E. Kürten,et al.  Inhomogenous Kauffman models at the borderline between order and chaos , 1997 .

[10]  K. E. Kürten Critical phenomena in model neural networks , 1988 .

[11]  H. Hilhorst,et al.  On the approach of the stationary state in Kauffman's random Boolean network , 1987 .

[12]  B. Derrida Dynamical phase transition in nonsymmetric spin glasses , 1987 .

[13]  Amos Maritan,et al.  Size and form in efficient transportation networks , 1999, Nature.

[14]  Bernard Derrida,et al.  The random map model: a disordered model with deterministic dynamics , 1987 .

[15]  S. Kauffman Emergent properties in random complex automata , 1984 .

[16]  K. E. Kurten Correspondence between neural threshold networks and Kauffman Boolean cellular automata , 1988 .

[17]  B. Harris PROBABILITY DISTRIBUTIONS RELATED TO RANDOM MAPPINGS , 1960 .

[18]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[19]  D. Stauffer,et al.  Random Boolean networks: Analogy with percolation , 1987 .

[20]  P. Davis,et al.  Learning feature constraints in a chaotic neural memory , 1997 .

[21]  E. Gardner,et al.  An Exactly Solvable Asymmetric Neural Network Model , 1987 .

[22]  Ricard V. Solé,et al.  Phase transitions and antichaos in generalized Kauffman networks , 1995 .

[23]  B. Derrida,et al.  Random networks of automata: a simple annealed approximation , 1986 .

[24]  N. Jan Multifractality and the Kauffman model , 1988 .