Proper generalized decomposition of time‐multiscale models

SUMMARY Models encountered in computational mechanics could involve many time scales. When these time scales cannot be separated, one must solve the evolution model in the entire time interval by using the finest time step that the model implies. In some cases, the solution procedure becomes cumbersome because of the extremely large number of time steps needed for integrating the evolution model in the whole time interval. In this paper, we considered an alternative approach that lies in separating the time axis (one-dimensional in nature) in a multidimensional time space. Then, for circumventing the resulting curse of dimensionality, the proper generalized decomposition was applied allowing a fast solution with significant computing time savings with respect to a standard incremental integration. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[2]  Weimin Han,et al.  Introduction to Finite Element Analysis , 2013 .

[3]  Douglas H. Norrie,et al.  An introduction to finite element analysis , 1978 .

[4]  Francisco Chinesta,et al.  An efficient reduced simulation of residual stresses in composite forming processes , 2010 .

[5]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[6]  Francisco Chinesta,et al.  Alleviating mesh constraints : Model reduction, parallel time integration and high resolution homogenization , 2008 .

[7]  Sreekanth Pannala,et al.  Time-parallel multiscale/multiphysics framework , 2009, J. Comput. Phys..

[8]  E. Cancès,et al.  Computational quantum chemistry: A primer , 2003 .

[9]  Jacob Fish,et al.  Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading , 2002 .

[10]  Carlo L. Bottasso,et al.  Multiscale temporal integration , 2002 .

[11]  A. Nouy Generalized spectral decomposition method for solving stochastic finite element equations : Invariant subspace problem and dedicated algorithms , 2008 .

[12]  Y Maday,et al.  Parallel-in-time molecular-dynamics simulations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  David Dureisseix,et al.  A computational strategy for thermo‐poroelastic structures with a time–space interface coupling , 2008 .

[14]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[15]  Francisco Chinesta,et al.  The Nanometric and Micrometric Scales of the Structure and Mechanics of Materials Revisited: An Introduction to the Challenges of Fully Deterministic Numerical Descriptions , 2008 .

[16]  Pierre Ladevèze,et al.  Multiscale Computational Strategy With Time and Space Homogenization: A Radial-Type Approximation Technique for Solving Microproblems , 2004 .

[17]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[18]  David Dureisseix,et al.  A computational strategy for poroelastic problems with a time interface between coupled physics , 2008 .

[19]  Francisco Chinesta,et al.  On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition , 2010, Math. Comput. Simul..

[20]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[21]  Francisco Chinesta,et al.  On the Reduction of Kinetic Theory Models Related to Finitely Extensible Dumbbells , 2006 .

[22]  Elías Cueto,et al.  Proper generalized decomposition of multiscale models , 2010 .

[23]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[24]  Manuel Laso,et al.  On the reduction of stochastic kinetic theory models of complex fluids , 2007 .

[25]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[26]  B. Mokdad,et al.  On the Simulation of Kinetic Theory Models of Complex Fluids Using the Fokker-Planck Approach , 2007 .

[27]  P. Ladevèze,et al.  On a Multiscale Computational Strategy with Time and Space Homogenization for Structural Mechanics , 2003 .

[28]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[29]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[30]  F. Chinesta,et al.  Recent advances on the use of separated representations , 2009 .

[31]  Elías Cueto,et al.  On thea priori model reduction: Overview and recent developments , 2006 .

[32]  H. Park,et al.  The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .

[33]  Yvon Maday,et al.  The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..

[34]  Elías Cueto,et al.  Non incremental strategies based on separated representations: applications in computational rheology , 2010 .