About the Asymptotic Accuracy of Barron Density Estimates
暂无分享,去创建一个
[1] J. Simonoff. Multivariate Density Estimation , 1996 .
[2] Martin de Prycker,et al. Asynchronous Transfer Mode, Solution for Broadband Isdn , 1991 .
[3] Imre Csiszár. Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.
[4] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[5] Igor Vajda,et al. About distances of discrete distributions satisfying the data processing theorem of information theory , 1997, IEEE Trans. Inf. Theory.
[6] L. I. Galtchouk,et al. Extremal problems in sequential testing homogeneity , 1995 .
[7] Joseph Yu Hui,et al. Switching and Traffic Theory for Integrated Broadband Networks , 1990 .
[8] I. Vajda,et al. Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.
[9] László Györfi,et al. Asymptotic Normality of L 1-Error in Density Estimation , 1995 .
[10] L. Györfi,et al. Minimum kolmogorov distance estimates of parameters and parametrized distributions , 1996 .
[11] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[12] Andrew R. Barron,et al. Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.
[13] László Györfi,et al. Distribution estimation consistent in total variation and in two types of information divergence , 1992, IEEE Trans. Inf. Theory.
[14] Saab Abou-Jaoudé. Conditions nécessaires et suffisantes de convergence L1 en probabilité de l'histogramme pour une densité , 1976 .
[15] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[16] L. Györfi,et al. Distribution Estimates Consistent in χ2-Divergence , 1998 .
[17] Friedrich Pukelsheim,et al. INSTRUCTIONAL CONFERENCE ON THE THEORY OF STOCHASTIC PROCESSES: Necessary and sufficient conditions for contiguity and entire asymptotic separation of probability measures , 1982 .
[18] Andrew R. Barron,et al. A bound on the financial value of information , 1988, IEEE Trans. Inf. Theory.
[19] Ferdinand Österreicher,et al. Statistical information and discrimination , 1993, IEEE Trans. Inf. Theory.
[20] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[21] Contiguity of Probability Measures , 1982 .
[22] K. Matusita. Distance and decision rules , 1964 .
[23] I. Vajda. On thef-divergence and singularity of probability measures , 1972 .
[24] A. Barron,et al. APPROXIMATION OF DENSITY FUNCTIONS BY SEQUENCES OF EXPONENTIAL FAMILIES , 1991 .
[25] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[26] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[27] I. Vajda. Theory of statistical inference and information , 1989 .
[28] Lee D. Davisson,et al. Universal noiseless coding , 1973, IEEE Trans. Inf. Theory.
[29] I. Vajda,et al. Asymptotic distributions of φ‐divergences of hypothetical and observed frequencies on refined partitions , 1998 .
[30] Ferdinand Österreicher. On a class of perimeter-type distances of probability distributions , 1996, Kybernetika.