Responses of the SVZ to Hypoxia and Hypoxia/Ischemia

[1]  R. Felling A REGENERATIVE RESPONSE OF ENDOGENOUS NEURAL STEM CELLS TO PERINATAL HYPOXIC/ISCHEMIC BRAIN DAMAGE , 2005 .

[2]  S. Levison,et al.  Neural Stem Cells in the Subventricular Zone are Resilient to Hypoxia/Ischemia whereas Progenitors are Vulnerable , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[3]  Ying Wang,et al.  Activated Neural Stem Cells Contribute to Stroke-Induced Neurogenesis and Neuroblast Migration toward the Infarct Boundary in Adult Rats , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  J. Cammermeyer The hypependymal microglia cell , 2004, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[5]  R. Felling,et al.  Enhanced neurogenesis following stroke , 2003, Journal of neuroscience research.

[6]  S. Levison,et al.  Damage to the Choroid Plexus, Ependyma and Subependyma as a Consequence of Perinatal Hypoxia/Ischemia , 2003, Developmental Neuroscience.

[7]  Jack M Parent,et al.  Rat forebrain neurogenesis and striatal neuron replacement after focal stroke , 2002, Annals of neurology.

[8]  O. Lindvall,et al.  Neuronal replacement from endogenous precursors in the adult brain after stroke , 2002, Nature Medicine.

[9]  Hirofumi Nakatomi,et al.  Regeneration of Hippocampal Pyramidal Neurons after Ischemic Brain Injury by Recruitment of Endogenous Neural Progenitors , 2002, Cell.

[10]  K. Jin,et al.  Stem cell factor stimulates neurogenesis in vitro and in vivo. , 2002, The Journal of clinical investigation.

[11]  F. Vaccarino,et al.  Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone , 2002, Neuroscience.

[12]  M. Klagsbrun,et al.  Heparin-Binding Epidermal Growth Factor-Like Growth Factor: Hypoxia-Inducible Expression In Vitro and Stimulation of Neurogenesis In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[13]  K. Blomgren,et al.  Role of Caspase-3 Activation in Cerebral Ischemia-Induced Neurodegeneration in Adult and Neonatal Brain , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  J. Volpe,et al.  Perinatal brain injury in the preterm and term newborn , 2002, Current opinion in neurology.

[15]  H. Sugimura,et al.  Genomic structure of the human β-PIX gene and its alteration in gastric cancer , 2002 .

[16]  D. Holtzman,et al.  Selective Vulnerability of Late Oligodendrocyte Progenitors to Hypoxia–Ischemia , 2002, The Journal of Neuroscience.

[17]  S. Weiss,et al.  Erythropoietin Regulates the In Vitro and In Vivo Production of Neuronal Progenitors by Mammalian Forebrain Neural Stem Cells , 2001, The Journal of Neuroscience.

[18]  K. Abe,et al.  Temporal and spatial differences of PSA-NCAM expression between young-adult and aged rats in normal and ischemic brains , 2001, Brain Research.

[19]  J. Volpe,et al.  Neurobiology of Periventricular Leukomalacia in the Premature Infant , 2001, Pediatric Research.

[20]  S. Levison,et al.  Perinatal Hypoxia-Ischemia Induces Apoptotic and Excitotoxic Death of Periventricular White Matter Oligodendrocyte Progenitors , 2001, Developmental Neuroscience.

[21]  Kortaro Tanaka,et al.  Activation of NG2-positive oligodendrocyte progenitor cells during post-ischemic reperfusion in the rat brain , 2001, Neuroreport.

[22]  M Chopp,et al.  Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia , 2001, Neuroscience.

[23]  Susan J. Vannucci,et al.  Hypoxia/Ischemia Depletes the Rat Perinatal Subventricular Zone of Oligodendrocyte Progenitors and Neural Stem Cells , 2001, Developmental Neuroscience.

[24]  David A. Greenberg,et al.  Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Skoff,et al.  Hypoxic–ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice , 2001, International Journal of Developmental Neuroscience.

[26]  Changlian Zhu,et al.  Synergistic Activation of Caspase-3 by m-Calpain after Neonatal Hypoxia-Ischemia , 2001, The Journal of Biological Chemistry.

[27]  K. Blomgren,et al.  Caspase-3 Activation after Neonatal Rat Cerebral Hypoxia-Ischemia , 2001, Neonatology.

[28]  D. Ferriero,et al.  Delayed Neurodegeneration in Neonatal Rat Thalamus after Hypoxia–Ischemia Is Apoptosis , 2001, The Journal of Neuroscience.

[29]  H. Kinney,et al.  Late Oligodendrocyte Progenitors Coincide with the Developmental Window of Vulnerability for Human Perinatal White Matter Injury , 2001, The Journal of Neuroscience.

[30]  Nadine Kabbani,et al.  Enhanced Proliferation, Survival, and Dopaminergic Differentiation of CNS Precursors in Lowered Oxygen , 2000, The Journal of Neuroscience.

[31]  Changlian Zhu,et al.  NMDA blockade attenuates caspase‐3 activation and DNA fragmentation after neonatal hypoxia–ischemia , 2000, Neuroreport.

[32]  K. Blomgren,et al.  Involvement of Caspase-3 in Cell Death after Hypoxia–Ischemia Declines during Brain Maturation , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  Changlian Zhu,et al.  Correlation Between Caspase‐3 Activation and Three Different Markers of DNA Damage in Neonatal Cerebral Hypoxia‐Ischemia , 2000, Journal of neurochemistry.

[34]  S. Levison,et al.  Cycling cells in the adult rat neocortex preferentially generate oligodendroglia , 1999, Journal of neuroscience research.

[35]  M. Chopp,et al.  Temporal profile of nestin expression after focal cerebral ischemia in adult rat , 1999, Brain Research.

[36]  D. van der Kooy,et al.  Adult Mammalian Forebrain Ependymal and Subependymal Cells Demonstrate Proliferative Potential, but only Subependymal Cells Have Neural Stem Cell Characteristics , 1999, The Journal of Neuroscience.

[37]  R. Makuch,et al.  Association of chronic sublethal hypoxia with ventriculomegaly in the developing rat brain. , 1998, Brain research. Developmental brain research.

[38]  Michael Schroeter,et al.  Inflammation and glial responses in ischemic brain lesions , 1998, Progress in Neurobiology.

[39]  J. García-Verdugo,et al.  Architecture and cell types of the adult subventricular zone: in search of the stem cells. , 1998, Journal of neurobiology.

[40]  Carlos Portera-Cailliau,et al.  Neurodegeneration in Excitotoxicity, Global Cerebral Ischemia, and Target Deprivation: A Perspective on the Contributions of Apoptosis and Necrosis , 1998, Brain Research Bulletin.

[41]  A. Shah,et al.  Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. , 1998, The Journal of clinical investigation.

[42]  J. García-Verdugo,et al.  Cellular Composition and Three-Dimensional Organization of the Subventricular Germinal Zone in the Adult Mammalian Brain , 1997, The Journal of Neuroscience.

[43]  W. Stewart,et al.  Chronic postnatal hypoxia increases the numbers of cortical neurons , 1997, Brain Research.

[44]  H. Hagberg,et al.  Brain injury after hypoxia-ischemia in newborn rats: relationship to extracellular levels of excitatory amino acids and cysteine , 1997, Brain Research.

[45]  T. Yanagihara,et al.  Ischemic damage and subsequent proliferation of oligodendrocytes in focal cerebral ischemia , 1997, Neuroscience.

[46]  R. Vannucci,et al.  Effects of Hypoxia-Ischemia on GLUT1 and GLUT3 Glucose Transporters in Immature Rat Brain , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[47]  P. Rhodes,et al.  Intrauterine Hypoxia-Ischemia Increases N-Methyl-D-Aspartate-Induced cGMP Formation and Glutamate Accumulation in Cultured Rat Cerebellar Granule Cells , 1995, Pediatric Research.

[48]  G. Rougon,et al.  Pattern of expression of highly polysialylated neural cell adhesion molecule in the developing and adult rat striatum , 1994, Neuroscience.

[49]  S. Levison,et al.  The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. , 1993, Development.

[50]  P. Weinstein,et al.  Reversible middle cerebral artery occlusion without craniectomy in rats. , 1989, Stroke.

[51]  B. Siesjö,et al.  Models for studying long‐term recovery following forebrain ischemia in the rat. 2. A 2‐vessel occlusion model , 1984, Acta neurologica Scandinavica.

[52]  J. Rice,et al.  The influence of immaturity on hypoxic‐ischemic brain damage in the rat , 1981, Annals of neurology.

[53]  Blakemore Wf The ultrastructure of the subependymal plate in the rat. , 1969 .

[54]  Nobuo Shimizu,et al.  Histochemical studies of succinic dehydrogenase and cytochrome oxidase of the rabbit brain, with special reference to the results in the paraventricular structures , 1957, The Journal of comparative neurology.