Deterministic and Efficient Quantum Key Distribution Using Entanglement Parity Bits and Ancillary Qubits

In this paper, we propose an efficient and deterministic quantum key distribution protocol for establishing a secret key between two untrusted users. In this protocol, a secret key is distributed to a sender and a receiver who share entangled states with a third trusted party but not with each other. This secret key is distributed by the means of special pure quantum states using remote state preparation and controlled gates. In addition, we employ the parity bits of the entangled pairs and the ancillary states to assist in preparing and measuring the secret states. Distributing a state to two users requires two maximally entangled pairs as the quantum channel and a two-particle von Neumann projective measurement. The proposed protocol is exact and deterministic. It distributes a secret key of <inline-formula> <tex-math notation="LaTeX">$ d $ </tex-math></inline-formula> qubits by the means of <inline-formula> <tex-math notation="LaTeX">$ 2d $ </tex-math></inline-formula> entangled pairs and, on average, <inline-formula> <tex-math notation="LaTeX">$ d $ </tex-math></inline-formula> bits of classical communication. We demonstrate the security of this protocol against entanglement attacks and present a method of privacy amplification.

[1]  Dong Wang,et al.  Remote preparation of a class of three-qubit states , 2008 .

[2]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[3]  Zhihua Xia,et al.  Steganalysis of least significant bit matching using multi-order differences , 2014, Secur. Commun. Networks.

[4]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[5]  B. Sanders,et al.  Optimal remote state preparation. , 2002, Physical review letters.

[6]  Xinxin Niu,et al.  Novel quantum steganography with large payload , 2010 .

[7]  Yu-zhu Wang,et al.  Remote preparation of a two-particle entangled state , 2003 .

[8]  Barry C. Sanders,et al.  Quantum state sharing , 2004, SPIE International Symposium on Fluctuations and Noise.

[9]  Li-Wei Chang,et al.  Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels , 2014 .

[10]  Yan Xia,et al.  Multiparty remote state preparation , 2007 .

[11]  K. Gao,et al.  Experimental implementation of remote state preparation by nuclear magnetic resonance , 2002, quant-ph/0202004.

[12]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[13]  Wang Jing,et al.  Multiparty-Controlled Remote Preparation of Two-Particle State , 2009 .

[14]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[15]  Lihua Gong,et al.  Three-party remote state preparation schemes based on entanglement , 2014, Quantum Inf. Process..

[16]  Zhi-Wen Mo,et al.  Joint Remote Preparation of an Arbitrary Five-Qubit Brown State , 2013 .

[17]  M. Luo,et al.  Deterministic remote preparation of an arbitrary W-class state with multiparty , 2010 .

[18]  M. Paris,et al.  Remote state preparation and teleportation in phase space , 2002, quant-ph/0209168.

[19]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[20]  Z. Kurucz,et al.  Continuous variable remote state preparation , 2005, quant-ph/0510074.

[21]  Zhanjun Zhang,et al.  Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing , 2008 .

[22]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[23]  Jian Li,et al.  Quantum key distribution and quantum authentication based on entangled state , 2001, quant-ph/0102058.

[24]  Tien-Sheng Lin,et al.  Quantum authentication protocol using entanglement swapping , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[25]  Zhang Ming,et al.  Classical Communication Cost and Remote Preparation of Multi-qubit with Three-Party , 2008 .

[26]  K. Peng,et al.  Multiparty secret sharing of quantum information based on entanglement swapping , 2004 .

[27]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[28]  Yafei Yu,et al.  Preparing remotely two instances of quantum state , 2003, quant-ph/0302170.

[29]  Remote Preparation of Arbitrary Two-Particle Quantum State in Noisy Environments , 2012, 2012 Symposium on Photonics and Optoelectronics.

[30]  Igor Devetak,et al.  Low-Entanglement Remote State Preparation , 2001, OFC 2001.

[31]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[32]  M. Curty,et al.  Quantum authentication of classical messages , 2001, quant-ph/0103122.

[33]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[34]  Mingxing Luo,et al.  Joint remote state preparation of arbitrary two-particle states via GHZ-type states , 2013, Quantum Inf. Process..

[35]  G. X. Pan Remote preparation of three-particle GHZ-class states , 2010 .

[36]  Liu Yimin,et al.  Remote Preparation of Three-Particle GHZ Class States , 2008 .

[37]  P. Kok,et al.  Postselected versus nonpostselected quantum teleportation using parametric down-conversion , 1999, quant-ph/9903074.

[38]  G. Guo,et al.  Remote preparation of mixed states via noisy entanglement (6 pages) , 2005, quant-ph/0503088.

[39]  EXPERIMENTAL PROPOSAL OF SWITCHED "DELAYED-CHOICE" FOR ENTANGLEMENT SWAPPING , 2005 .

[40]  D. Leung,et al.  Hiding bits in bell states. , 2000, Physical Review Letters.

[41]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[42]  Zhang Ming,et al.  Remote preparation of an entangled two-qubit state with three parties , 2008 .

[43]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[44]  B. Shi,et al.  Remote state preparation of an entangled state , 2002 .

[45]  Dong Wang,et al.  Joint remote state preparation of arbitrary two-qubit state with six-qubit state , 2011 .

[46]  M. Bourennane,et al.  Experimental quantum secret sharing using telecommunication fiber , 2008 .

[47]  Zhang Wen-hai,et al.  Remote preparation of multipartite pure state , 2006 .

[48]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[49]  Hong Yu,et al.  REMOTE PREPARATION OF A TWO-PARTICLE ENTANGLED STATE , 2010 .

[50]  Yun Deng,et al.  Joint Remote Preparation of an Arbitrary 4-Qubit χ-State , 2012 .

[51]  B. Zeng,et al.  Remote-state preparation in higher dimension and the parallelizable manifold Sn-1 , 2001, quant-ph/0105088.

[52]  Entanglement teleportation , 1999 .

[53]  Liu Yimin,et al.  Controlled Remote State Preparation , 2009 .

[54]  Naixue Xiong,et al.  Steganalysis of LSB matching using differences between nonadjacent pixels , 2016, Multimedia Tools and Applications.

[55]  Shi Shou-Hua,et al.  Classical Communication Cost and Probabilistic Remote Preparation of Four-Particle Entangled W State , 2009 .

[56]  Yan Xia,et al.  Joint remote preparation of an arbitrary two-qubit state via a generalized seven-qubit brown state , 2015 .

[57]  M. Goggin,et al.  Remote state preparation: arbitrary remote control of photon polarization. , 2005, Physical review letters.

[58]  Binayak S. Choudhury,et al.  Joint remote state preparation for two-qubit equatorial states , 2015, Quantum Inf. Process..

[59]  B A Bell,et al.  Experimental demonstration of graph-state quantum secret sharing , 2014, Nature Communications.

[60]  H. Lo,et al.  Quantum key distribution with entangled photon sources , 2007, quant-ph/0703122.

[61]  G. Guo,et al.  Faithful remote state preparation using finite classical bits and a nonmaximally entangled state , 2003, quant-ph/0307027.