Forest vegetation of the Himalaya

This review deals with the forest vegetation of the Himalaya with emphasis on: paleoecological, phytogeographical, and phytosociological aspects of vegetation; structural and functional features of forest ecosystem; and relationship between man and forests.The Himalayan mountains are the youngest, and among the most unstable. The rainfall pattern is determined by the summer monsoon which deposits a considerable amount of rain (often above 2500 mm annually) on the outer ranges. The amount of annual rainfall decreases from east to west, but the contribution of the winter season to the total precipitation increases. Mountains of these dimensions separate the monsoon climate of south Asia from the cold and dry climate of central Asia. In general, a rise of 270 m in elevation corresponds to a fall of 1°C in the mean annual temperature up to 1500 m, above which the fall is relatively rapid.Large scale surface removals and cyclic climatic changes influenced the course of vegetational changes through geological time. The Himalayan ranges, which started developing in the beginning of the Cenozoic, earlier supported tropical wet evergreen forests throughout the entire area (presently confined to the eastern part). The Miocene orogeny caused drastic changes in the vegetation, so much so that the existing flora was almost entirely replaced by the modern flora. Almost all the dominant forest species of the Pleistocene continue to maintain their dominant status to the present. Presently the Himalayan ranges encompass Austro-Polynesian, Malayo-Burman, Sino-Tibetan, Euro-Mediterranean, and African elements. While the Euro-Mediterranean affinities are well represented in the western Himalayan region (west of 77°E long.), the Chinese and Malesian affinities are evident in the eastern region (east of 84°E long.). However, the proportion of endemic taxa is substantial in the entire region.A representation of formation types in relation to climatic factors, viz., rainfall and temperature, indicates that boundaries between the types are not sharp. Formation types often integrate continuously, showing broad overlaps. Climate does not entirely determine the formation type, and the influence of soil, fire, etc., is also substantial. The ombrophilous broad leaf forests located in the submontane belt (< 1000 m) of the eastern region are comparable to the typical tropical rain forests. On the other extreme, communities above 3000 m elevation are similar to sub-alpine and alpine types. From favorable to less favorable environments, as observed with decreasing moisture from east to west, or with decreasing temperature from low to high elevations, the forests become increasingly open, shortstatured and simpler, with little vertical stratification. Ordination of forest stands distributed within 300–2500 m elevations of the central Himalaya, by and large indicates a continuity of communities, with scattered centers of species importance values in the ordination field. Within the above elevational transect, sal (Shorea robusta) and oak (Quercus spp.) forests may be designated as the climax communities, respectively, of warmer and cooler climates. The flora of a part of the central Himalayan region is categorized as therohemigeophytic and that of a part of the western Himalayan region as geochamaephytic.An analysis of population structure over large areas in the central Himalaya, based on density-diameter distribution of trees, suggests that oldgrowth forests are being replaced by even-aged successional forests, dominated by a few species, such asPinus roxburghii. Paucity of seedlings of climax species, namelyShorea robusta andQuercus spp. over large areas is evident.The Himalayan catchments are subsurface-flow systems and, therefore, are particularly susceptible to landslips and landslides. Loss of water and soil in terms of overflow is insignificant.Studies on recovery processes of forest ecosystems damaged due to shifting cultivation or landslides indicate that the ecosystems can recover quite rapidly, at least in elevations below 2500 m. For example, on a damaged forest site, seedlings of climax species (Quercus leucotrichophora) appeared only 21 years after the landslide.In the central Himalaya, the biomass of a majority of forests (163-787 t ha−1) falls within the range (200-600 t ha−1) given for many mature forests of the world, and the net primary productivity (found in the range of 11.0–27.4 t ha−1 yr−1) is comparable with the range of 20–30 t ha−1 yr−1 given for highly productive communities of favorable environments. In most of the forests of this region, the litter fall values (2.1-3.8 t C ha−1 yr−1) are higher than the mean reported for warm temperate forests (2.7 t C ha−1 yr−1). Of the total litter, the tree leaves account for 54–82% in the Himalayan forests.The rate of decomposition of leaves in some broadleaf species of submontane belt (0.253-0.274% day−1) are comparable with those reported for some tropical rain forest species. Because of the paucity of microorganisms and microarthropods in the forest litter and soil, high initial C:N ratio and high initial lignin content in leaves, the rate of leaf litter decomposition inPinus roxburghii is markedly slower than in other species of the central Himalaya. The fungal species composition of the leaf litterof Pinus roxburghii is also distinct from those of other species.A greater proportion of nutrients is accumulated in the biomass component of the Himalayan forests than in the temperate forests. Although litter fall is the major route through which nutrients return from biomass to the soil pool, a substantial proportion of the total return is in the form of throughfall and stemflow. Among the dominant species of the central Himalaya, retranslocation of nutrients from the senescing leaves was markedly greater inPinus roxburghii than inQuercus spp. andShorea robusta. Consequently, the C:N ratio of leaf litter is markedly higher inPinus roxburghii than in the other species. Immobilization of nutrients by the decomposers of the litter with high C:N ratio is one of the principal strategies through whichPinus roxburghii invades other forests and holds the site against possible reinvasion by oaks.Observations on the seasonality of various ecosystem functions suggest that Himalayan ecosystems are geared to take maximum advantages of the monsoon period (rainy season).Most of the human population depends on shifting-agriculture in the eastern region and on settled agriculture in the central and western regions. Either of these is essentially a forest-dependent cultivation. Each unit of agronomic energy produced in the settled agriculture entails about seven units of energy from forests. Consequently, forests with reasonable crown cover account for insignificant percentage of the land. Tea plantations and felling of trees for timber, paper pulp, etc., are some of the major commercial activities which adversely affected the Himalayan forests.RésuméCette revue concerne la végétation forestière de l’Himalaya. Elle précise l’information concernant la paléoécologie, la phytogéographie, la phytosociologie, le structure et le fonctionnement des écosystèmes et le rapport entre l’homme et la forêt.Les montagnes de l’Himalaya sont les plus jeunes et parmi les plus instables. La pluviométrie dépend surtout de la mousson d’été et les chaînes extérieures sont bien arrosées (>2500 mm par an). Les précipitations annuelles décroissent de l’Est vers l’Ouest tandis que la composante hivernale augmente. Ces montagnes séparent les climats de mousson de l’Asie du Sud des climats froids et secs de l’Asie Centrale.L’érosion du sol sur une grand étendue et des changemenets cycliques du climat ont déterminé des changements dans le couvert végétal tout au long des temps géologiques. Les chaînes Himalayennes qui ont commencés leur soulèvement au commencement du coenozoïque étaient entièrement couvertes d’une forêt ombrophile tropicale. (Ce type se trouve encore de nos jours dans la partie orientale de l’Himalaya.) L’orogénie miocène provoqua de tels changements dans la végétation que la flore de cette époque a été entièrement remplacée par la flore moderne. Les espèces forestières dominantes du pleistocène gardent leur importance dans les forêts actuelles.Des éléments floraux Austro-Polynésiens, Malais-Birmans, Sino-Tibetains, Euro-Méditerranéens et Africains sont actuellement présents sur les montagnes himalayennes. Tandis que les affinités Euro-Mediterranéennes sont bien représentées dans l’Himalaya occidental (à l’Ouest du 77° Est), les affinités Chinoises et Malaises sont évidentes dans la partie orientale (à l’Est de 84°E). Cependant la proportion des éléments endémiques est importante dans toute la région.La relation entre les types de formations et les facteurs climatiques (pluviosité, température) indique que les limites entre les types sont approximatives. D’ailleurs, le climat lui même ne détermine pas exclusivement les types et les effets du sol, du feu, etc., peuvent être importantes. Les forêts feuillues ombrophiles localisées dans l’étage sous-montagnard (< 1000 m) de la région orientale sont comparables aux forêts ombrophiles tropicales typiques. A l’opposé les communautés qui se trouvent au-dessus de 3000 m d’altitude sont comparables aux types subalpins et alpins. En allant des conditions favorables vers le moins favorables soit par exemple d’Est en Ouest le long de l’axe de diminution des précipitations soit en suivant les gradient altitudinal de baisse des températures les forêts deviennent de plus en plus ouvertes, basses et structurellement simples avec peu de stratification verticale. L’ordination des peuplements forestières situés entre 300–2500 m dans l’Himalaya central indique une continuité des communautés avec des centres de valeurs d’importance des espèces dispersés dans le champ d’ordination. Dans ce transect altitudinal, les forêts à sal (Shorea robusta) et à chêne (Quercus spp.) peuvent

[1]  S. Singh,et al.  Population structure of forests of Kumaun Himalaya: implications for management , 1984 .

[2]  J. Singh,et al.  Estimation of biomass and nutrient storage in a Himalayan moist temperate forest , 1983 .

[3]  U. Prakash A survey of the fossil dicotyledonous woods from India and the Far East , 1965 .

[4]  P. Ramakrishnan,et al.  SECONDARY SUCCESSION FOLLOWING SLASH AND BURN AGRICULTURE IN NORTH-EASTERN INDIA I. BIOMASS, LITTERFALL AND PRODUCTIVITY , 1983 .

[5]  D. Greenland,et al.  Nutrient content of the moist tropical forest of Ghana , 1960, Plant and Soil.

[6]  S. Singh,et al.  THE OAK FORESTS OF THE KUMAUN HIMALAYA (INDIA): COMPOSITION, DIVERSITY, AND REGENERATION , 1985 .

[7]  P. K. Ralhan,et al.  Stability of Himalayan Climax Oak Forests in View of Resilience Hypothesis , 1985, Environmental Conservation.

[8]  J. Singh,et al.  Effect of habitat on decomposition of standard leaf-litter species , 1985, Biology and Fertility of Soils.

[9]  A. Tiwari,et al.  Mapping forest biomass in India through aerial photographs and nondestructive field sampling , 1984 .

[10]  B. Rao,et al.  Interception Studies in Chir and Teak Plantations-new Forest , 1968 .

[11]  K. Vogt,et al.  Organic Matter and Nutrient Dynamics in Forest Floors of Young and Mature Abies amabilis Stands in Western Washington, as Affected by Fine‐Root Input , 1983 .

[12]  O. Loucks,et al.  Evolution of diversity, efficiency, and community stability. , 1970, American zoologist.

[13]  A. Pandey,et al.  A Hypothesis to Account for the Major Pathway of Soil Loss from Himalaya , 1983, Environmental Conservation.

[14]  J. Singh,et al.  Nitrogen dynamics of decomposing hardwood leaf litter in a central himalayan forest , 1985 .

[15]  P. Ramakrishnan,et al.  Cropping and yields in agricultural systems of the north-eastern hill region of India , 1981 .

[16]  P. Risser,et al.  BIOMASS, ANNUAL NET PRIMARY PRODUCTION, AND DYNAMICS OF SIX MINERAL ELEMENTS IN A POST OAK-BLACKJACK OAK FOREST' , 1974 .

[17]  M. Wali,et al.  Analysis of a North Dakota Gallery Forest: Vegetation in Relation to Topographic and Soil Gradients , 1974 .

[18]  J. Singh,et al.  Nutrient movement in litter fall and precipitation components for Central Himalayan forests , 1985 .

[19]  F. Bazzaz,et al.  Responses of an early and a late successional species of Polygonum to variations in resource availability , 1983, Oecologia.

[20]  J. Singh,et al.  Energy-flow Relationships Between Agro- and Forest Ecosystems in Central Himalaya , 1984, Environmental Conservation.

[21]  J. Singh,et al.  A phytosociological analysis of woody species in forest communities of a part of Kumaun Himalaya , 1982, Vegetatio.

[22]  S. McNaughton,et al.  STRUCTURE AND FUNCTION OF SUCCESSIONAL VASCULAR PLANT COMMUNITIES IN CENTRAL NEW YORK , 1975 .

[23]  Vishnu Mittre Palaeobotanical evidences of the environment of early man in northwestern and western India , 1979 .

[24]  J. Singh,et al.  Apportionment of rainfall in central Himalayan forests (India) , 1985 .

[25]  J. Singh,et al.  Nutrients in precipitation components for pine and oak forests in Kumaun Himalaya , 1984 .

[26]  J. Singh,et al.  Decomposition of woody branch litter on an altitudinal transect in the Himalaya , 2004, Vegetatio.

[27]  J. Connell,et al.  Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization , 1977, The American Naturalist.

[28]  W. A. Thomas Decomposition of Loblolly Pine Needles With and Without Addition of Dogwood Leaves , 1968 .

[29]  Eville Gorham,et al.  Litter Production in Forests of the World , 1964 .

[30]  G. Likens,et al.  Response of Chemoautotrophic Nitrifiers to Forest Cutting , 1968 .

[31]  D. Lawrence,et al.  Plant Biomass and Productivity of Prairie, Savanna, Oakwood, and Maize Field Ecosystems in Central Minnesota , 1963 .

[32]  J. J. Rochow,et al.  A Vegetational Description of a Mid-Missouri Forest Using Gradient Analysis Techniques , 1972 .

[33]  P. Ramakrishnan,et al.  Run-off and Infiltration Losses Related to Shifting Agriculture (Jhum) in Northeastern India , 1981, Environmental Conservation.

[34]  A. E. Osmaston Notes on the Forest Communities of the Garhwal Himalaya , 1922 .

[35]  E. Sharma,et al.  SEASONAL VARIATION IN NITROGEN FIXATION BY DIFFERENT AGES OF ROOT NODULES OF ALNUS NEPALENSIS PLANTATIONS, IN THE EASTERN HIMALAYAS , 1984 .

[36]  J. Singh,et al.  Quantitative profile structure of certain forests in the Kumaun Himalaya , 1982, Proceedings / Indian Academy of Sciences.

[37]  J. Singh,et al.  Biological spectrum and other structural functional attributes of the vegetation of Kumaun Himalaya , 1982, Vegetatio.

[38]  P. Edwards Studies of Mineral Cycling in a Montane Rain Forest in New Guinea: II. The Production and Disappearance of Litter , 1977 .

[39]  G. Puri Indian forest ecology , 1960 .

[40]  C. Ahlgren,et al.  Effects of Prescribed Burning on Soil Microorganisms in a Minnesota Jack Pine Forest , 1965 .

[41]  P. Ramakrishnan,et al.  A comparative study of the energy budget of hill agro-ecosystems with emphasis on the slash and burn system (JHUM) at lower elevations of North-Eastern India , 1982 .

[42]  S. Raychaudhuri,et al.  The Soils of India , 1963 .

[43]  W. Reiners Structure and Energetics of Three Minnesota Forests , 1972 .

[44]  J. Singh,et al.  Soil and litter respiration rates in different microhabitats of a mixed oak-conifer forest and their control by edaphic conditions and substrate quality , 1982, Plant and Soil.

[45]  G. Dimmock,et al.  Nutrient distribution in a jarrah (Eucalyptus marginata Donn ex Sm.) ecosystem in south-west Western Australia , 1980 .

[46]  P. Ramakrishnan,et al.  Structure and function of a sub-tropical humid forest of Meghalaya III. Nutrient flow through water , 1982, Proceedings / Indian Academy of Sciences.

[47]  P. Duvigneaud,et al.  Biological Cycling of Minerals in Temperate Deciduous Forests , 1973 .

[48]  R. Whittaker,et al.  The biochemical ecology of higher plants. , 1970 .

[49]  H. Champion,et al.  A preliminary survey of the forest types of India and Burma , 1936 .

[50]  Premnath,et al.  Some Preliminary Investigations on the Rainfall Interception by Leaf Litter , 1963 .

[51]  J. Singh,et al.  Succession of vegetation types in the Tons Valley of the Garhwal Himalayas , 1962 .

[52]  A. Saxena,et al.  India's Silent Valley and Its Threatened Rain-forest Ecosystems , 1984, Environmental Conservation.

[53]  Robert H. Whittaker,et al.  Climax Concepts and Recognition , 1974 .

[54]  D. H. Knight,et al.  Aims and Methods of Vegetation Ecology , 1974 .

[55]  J. Singh,et al.  Plant decomposition and soil respiration in terrestrial ecosystems , 1977, The Botanical Review.

[56]  J. Singh,et al.  Overland flow, sediment output and nutrient loss from certain forested sites in the central Himalaya, India , 1984 .

[57]  E. Stebbing The Forests of India , 1923, Nature.

[58]  J. Singh,et al.  Accumulation in Wood: A Nutrient-conserving Strategy of Tropical Forests , 1985, Environmental Conservation.

[59]  J. Ovington,et al.  The growth and composition of natural stands of birch , 1959, Plant and Soil.

[60]  R. Whittaker Forest Dimensions and Production in the Great Smoky Mountains , 1966 .

[61]  Certain phenological characters of the shrub layer of Kumaun Himalayan forests , 1985, Vegetatio.

[62]  P. Ramakrishnan,et al.  GROWTH STRATEGY OF TREES RELATED TO SUCCESSIONAL STATUS I. ARCHITECTURE AND EXTENSION GROWTH , 1982 .

[63]  J. Singh,et al.  Man and forests: a central Himalayan case study. , 1984 .

[64]  J. Singh,et al.  Nutrient changes and release during decomposition of leaf litter in a Himalayan oak–conifer forest , 1984 .

[65]  J. Olson,et al.  BREAKDOWN OF CONFINED AND NON-CONFINED OAK LITTER , 1963 .

[66]  E. Odum The strategy of ecosystem development. , 1969, Science.

[67]  Jan Jeník,et al.  Tropical Forest and its Environment. , 1976 .

[68]  G. Puri,et al.  The Himalayan Conifers - IV. The Study of Soil Profiles Under Some Forest Communities in the Bashahr Himalayas , 1956 .

[69]  H. Jenny,et al.  COMPARATIVE STUDY OF DECOMPOSITION RATES OF ORGANIC MATTER IN TEMPERATE AND TROPICAL REGIONS , 1949 .

[70]  D. Bartos,et al.  Biomass and nutrient content of quaking aspen at two sites in the western United States , 1978 .

[71]  H. Lieth Primary production: Terrestrial ecosystems , 1973 .

[72]  J. Singh,et al.  Pattern of wood litter fall in five forests located along an altitudinal gradient in Central Himalaya , 1985, Vegetatio.

[73]  C. Raunkiær,et al.  The life forms of plants and statistical plant geography , 1934 .

[74]  R. E. Shanks,et al.  First-Year Breakdown of Leaf Litter in Southern Appalachian Forests , 1961, Science.

[75]  G. Puri,et al.  The Himalayan Conifers V. The Succession of Forest Communities in Chir Pine ( Pinus roxburghii ) Forests of the Punjab and Himachal Pradesh , 1956 .

[76]  M. Witkamp Decomposition of Leaf Litter in Relation to Environment, Microflora, and Microbial Respiration , 1966 .

[77]  C. Gresham Litterfall patterns in mature loblolly and longleaf pine stands in coastal South Carolina. , 1982 .

[78]  J. Achache,et al.  India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates , 1984, Nature.

[79]  S. G. Champion,et al.  A revised survey of the forest types of India. , 1968 .

[80]  V. Meher-homji,et al.  Some phytogeographic aspects of Rajasthan, India , 1970, Vegetatio.

[81]  L. Taylor,et al.  Ecology and Biogeography in India , 1975 .

[82]  J. Singh,et al.  Total biomass and biomass production of Pinusroxburghii trees growing in all-aged natural forests , 1982 .

[83]  J. Wehrmann Rodin, L. E., und Bazilevich, N. J.: Production and Mineral Cycling in Terrestrial Vegetation (Übersetzung aus dem Russischen von G. E. Fogg). Oliver and Boyd, Edinburgh und London 1967. 288 Seiten, 69 Abbildungen und 57 Tabellen, £ 7, 7s , 1968 .

[84]  J. Singh,et al.  Replacement of oak forest with pine in the Himalaya affects the nitrogen cycle , 1984, Nature.

[85]  N. I. Bazilevich,et al.  Production and mineral cycling in terrestrial vegetation , 1967 .

[86]  S. K. Seth,et al.  General silviculture for India , 1968 .

[87]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[88]  Gene E. Likens,et al.  The Hubbard Brook Ecosystem Study: Forest Nutrient Cycling and Element Behavior , 1979 .

[89]  R. Moral High elevation vegetation of the Enchantment Lakes Basin, Washington , 1979 .

[90]  G. Likens,et al.  Pattern and process in a forested ecosystem. , 1979 .

[91]  R. N. Lakhanpal Tertiary Floras of India and Their Bearing on the Historical Geology of the Region , 1970 .

[92]  J. Singh,et al.  A quantitative study of the forest floor, litter fall and nutrient return in an oak-conifer forest in Himalaya. II. Pattern of litter fall and nutrient return , 1981 .

[93]  C. Brooks,et al.  The climates of North America , 1938 .

[94]  Helmut Lieth,et al.  Primary Production of the Major Vegetation Units of the World , 1975 .

[95]  P. Ramakrishnan,et al.  Secondary succession following slash and burn agriculture in north-eastern Indian. II: Nutrient cycling , 1983 .

[96]  A. Saxena,et al.  Himalayan Forests: A Net Source of Carbon for the Atmosphere , 1985, Environmental Conservation.

[97]  J. S. Bisht,et al.  Microarthropods associated with certain litter species in Kumaun Himalaya , 1984, Pedobiologia.

[98]  J. Singh,et al.  Mechanism of ecosystem recovery: a case study from Kumaun Himalaya , 1985 .

[99]  Jerry F. Franklin,et al.  Subalpine Coniferous Forests of Central Honshu, Japan , 1979 .

[100]  J. Singh,et al.  Energetics of hill agro-ecosystems: A case study from Central Himalaya , 1984 .

[101]  J. Singh,et al.  Water, sediment and nutrient movement in forested and non-forested catchments in Kumaun Himalaya , 1983 .

[102]  M. Vishnu Floristic and ecological reconsiderations of the Pleistocene plant impressions from Kashmir , 1964 .

[103]  P. G. Murphy,et al.  A Latitudinal Gradient of Wood and Litter Production, and Its Implication Regarding Competition and Species Diversity in Trees , 1978 .

[104]  C. W. Thornthwaite,et al.  The Climates of North America: According to a New Classification , 1931 .

[105]  J. Singh,et al.  Tree population structure of certain Himalayan forest associations and implications concerning their future composition , 1984, Vegetatio.

[106]  N. L. Bor,et al.  Die horizontale und vertikale Verbreitung der Vegetation im Himalaya , 1958 .

[107]  O. Christensen Wood Litter Fall in Relation to Abscission, Environmental Factors, and the Decomposition Cycle in a Danish Oak Forest , 1975 .

[108]  P. S. Ramakrishnan,et al.  Phenology of trees in a sub-tropical humid forest in north-eastern India , 1982, Vegetatio.

[109]  P. Ramakrishnan,et al.  Soil nutrient status of hill agro-ecosystems and recovery pattern after slash and burn agriculture (Jhum) in north-eastern India , 1981, Plant and Soil.

[110]  George M. Woodwell,et al.  Nutrient Concentrations in Plants in the Brookhaven Oak-Pine Forest , 1975 .

[111]  J. Singh,et al.  Leaf-Litter Decomposition in an Oak-Conifer Forest in Himalaya: The Effects of Climate and Chemical Composition , 1982 .

[112]  G. Cottam,et al.  The Phytosocioloy of an Oak Woods in Southwestern Wisconsin , 1949 .

[113]  M. Wali,et al.  Analysis of a North Dakota Gallery Forest: Nutrient, Trace Element and Productivity Relations , 1978 .

[114]  S. Singh,et al.  Phenological characteristics of the tree layer of Kumaun Himalayan forests , 1985, Vegetatio.

[115]  C. B. Clarke On the Subsubareas of British India, illustrated by the detailed Distribution of the Cyperaceæ in that Empire. , 1898 .

[116]  Sher Singh The Effect of Climate on the Conifers of Kashmir , 1929 .

[117]  P. Edwards,et al.  STUDIES OF MINERAL CYCLING IN A MONTANE RAIN FOREST IN NEW GUINEA III. THE DISTRIBUTION OF MINERAL ELEMENTS IN THE ABOVE-GROUND MATERIAL , 1982 .

[118]  D. Chatterjee Studies on the endemic flora of India and Burma , 1939 .

[119]  P. Ramakrishnan,et al.  Structure and function of a sub-tropical humid forest of Meghalaya I. Vegetation, biomass and its nutrients , 1982, Proceedings / Indian Academy of Sciences.

[120]  George M. Woodwell,et al.  Structure, Production and Diversity of the Oak-Pine Forest at Brookhaven, New York , 1969 .

[121]  J. Proctor,et al.  ECOLOGICAL STUDIES IN FOUR CONTRASTING LOWLAND RAIN FORESTS IN GUNUNG MULU NATIONAL PARK, SARAWAK II. LITTERFALL, LITTER STANDING CROP AND PRELIMINARY OBSERVATIONS ON HERBIVORY , 1983 .

[122]  F. Blasco Aspects of the flora, and ecology of savannas of the South Indian hills. , 1970 .

[123]  H. S. Horn,et al.  The Ecology of Secondary Succession , 1974 .

[124]  K. Valdiya Simla Slates: The Precambrian Flysch of the Lesser Himalaya, Its Turbidites, Sedimentary Structures and Paleocurrents , 1970 .

[125]  F. Bormann,et al.  Role of Erythronium americanum Ker. in Energy Flow and Nutrient Dynamics of a Northern Hardwood Forest Ecosystem , 1976, Science.

[126]  B. K. Mishra,et al.  Energy flow through a village ecosystem with slash and burn agriculture in North-eastern India , 1982 .

[127]  K. Vass,et al.  Limnological studies on Dal lake - chemical features [India] , 1978 .

[128]  J. P. Grime,et al.  Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory , 1977, The American Naturalist.

[129]  M. Duever,et al.  Mineral cycling in a tropical moist forest ecosystem , 1975 .

[130]  E. Tanner The Decomposition of Leaf Litter in Jamaican Montane Rain Forests , 1981 .