On Finding Bipartite Graphs With a Small Number of Short Cycles and Large Girth

The problem of finding bipartite (Tanner) graphs with given degree sequences that have large girth and few short cycles is of great interest in many applications including construction of good low-density parity-check (LDPC) codes. In this paper, we prove that for given integers <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula>, and degree sequences <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\pi '$ </tex-math></inline-formula>, the problem of determining whether there exists a simple bipartite graph with degree sequences <inline-formula> <tex-math notation="LaTeX">$(\pi, \pi ')$ </tex-math></inline-formula> that has at most <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula>) cycles of length four (six and eight, respectively) is NP-complete. This is proved by a two-step polynomial-time reduction from the 3-Partition Problem. On the other hand, using connections to linear hypergraphs, we prove that given the degree sequence <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula>, a polynomial time algorithm can be devised to determine whether there exists a bipartite graph whose degree sequence on one side of the bipartition is <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula> and has a girth of at least six. In addition to these complexity results, we devise a quasi-polynomial time algorithm that can construct a bipartite graph with given (irregular) degree sequences and a girth that increases logarithmically with the size of the graph. Compared to the well-known progressive-edge-growth (PEG) algorithm, the proposed method, in some cases, results in Tanner graphs with larger girth, particularly for scenarios where the degree sequences of the graph are strictly enforced.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Amir H. Banihashemi,et al.  On Characterization of Elementary Trapping Sets of Variable-Regular LDPC Codes , 2013, IEEE Transactions on Information Theory.

[3]  Amir H. Banihashemi,et al.  A PEG Construction of Finite-Length LDPC Codes with Low Error Floor , 2012, IEEE Communications Letters.

[4]  Amir H. Banihashemi,et al.  Construction of Girth-8 QC-LDPC Codes Free of Small Trapping Sets , 2019, IEEE Communications Letters.

[5]  Amir H. Banihashemi,et al.  Characterization and Efficient Search of Non-Elementary Trapping Sets of LDPC Codes with Applications to Stopping Sets , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[6]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[7]  Liang Zhou,et al.  PEG-Like Design of Binary QC-LDPC Codes Based on Detecting and Avoiding Generating Small Cycles , 2018, IEEE Transactions on Communications.

[8]  Amir H. Banihashemi,et al.  Message-Passing Algorithms for Counting Short Cycles in a Graph , 2010, IEEE Transactions on Communications.

[9]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[10]  Øyvind Ytrehus,et al.  An Efficient Algorithm to Find All Small-Size Stopping Sets of Low-Density Parity-Check Matrices , 2009, IEEE Transactions on Information Theory.

[11]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[12]  Amir H. Banihashemi,et al.  On the girth of quasi cyclic protograph LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[13]  Lara Dolecek,et al.  Asymptotic Distribution of Absorbing Sets and Fully Absorbing Sets for Regular Sparse Code Ensembles , 2011, IEEE Transactions on Communications.

[14]  Gerhard J. Woeginger,et al.  Multigraph realizations of degree sequences: Maximization is easy, minimization is hard , 2008, Oper. Res. Lett..

[15]  Keith M. Chugg,et al.  An algorithm for counting short cycles in bipartite graphs , 2006, IEEE Transactions on Information Theory.

[16]  Dejan Vukobratovic,et al.  Generalized ACE Constrained Progressive Edge-Growth LDPC Code Design , 2008, IEEE Communications Letters.

[17]  Amir H. Banihashemi,et al.  Asymptotic Average Multiplicity of Structures Within Different Categories of Trapping Sets, Absorbing Sets, and Stopping Sets in Random Regular and Irregular LDPC Code Ensembles , 2019, IEEE Transactions on Information Theory.

[18]  Amir H. Banihashemi,et al.  On the Tanner Graph Cycle Distribution of Random LDPC, Random Protograph-Based LDPC, and Random Quasi-Cyclic LDPC Code Ensembles , 2017, IEEE Transactions on Information Theory.

[19]  Liang Zhou,et al.  A New Multi-Edge Metric-Constrained PEG Algorithm for Designing Binary LDPC Code With Improved Cycle-Structure , 2016, IEEE Transactions on Communications.

[20]  Amir H. Banihashemi,et al.  Lower Bounds on the Size of Smallest Elementary and Non-Elementary Trapping Sets in Variable-Regular LDPC Codes , 2017, IEEE Communications Letters.

[21]  Shashi Kiran Chilappagari,et al.  On the Construction of Structured LDPC Codes Free of Small Trapping Sets , 2012, IEEE Transactions on Information Theory.

[22]  Marco Baldi,et al.  Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional Codes With Large Girth , 2018, IEEE Communications Letters.

[23]  Amir H. Banihashemi,et al.  On Computing the Multiplicity of Cycles in Bipartite Graphs Using the Degree Distribution and the Spectrum of the Graph , 2018, IEEE Transactions on Information Theory.

[24]  Hua Xiao,et al.  Error rate estimation of low-density parity-check codes on binary symmetric channels using cycle enumeration , 2009, IEEE Transactions on Communications.

[25]  Rodrigo C. de Lamare,et al.  Decoder-Optimised Progressive Edge Growth Algorithms for the Design of LDPC Codes with Low Error Floors , 2012, IEEE Communications Letters.

[26]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.

[27]  Marco Baldi,et al.  Connections Between Low-Weight Codewords and Cycles in Spatially Coupled LDPC Convolutional Codes , 2018, IEEE Transactions on Communications.

[28]  Marco Baldi,et al.  Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes With Small Constraint Length , 2018, IEEE Transactions on Communications.

[29]  Xiang-Gen Xia,et al.  Efficient Progressive Edge-Growth Algorithm Based on Chinese Remainder Theorem , 2014, IEEE Transactions on Communications.

[30]  Hua Xiao,et al.  Estimation of Bit and Frame Error Rates of Finite-Length Low-Density Parity-Check Codes on Binary Symmetric Channels , 2007, IEEE Transactions on Communications.

[31]  Yufei Li,et al.  On the Construction of LDPC Codes Free of Small Trapping Sets by Controlling Cycles , 2018, IEEE Communications Letters.

[32]  Amir H. Banihashemi,et al.  Tight Lower and Upper Bounds on the Minimum Distance of LDPC Codes , 2018, IEEE Communications Letters.

[33]  Amir H. Banihashemi,et al.  A heuristic search for good low-density parity-check codes at short block lengths , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[34]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[35]  Amir H. Banihashemi,et al.  An efficient algorithm for finding dominant trapping sets of LDPC codes , 2011, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[36]  Emina Soljanin,et al.  Asymptotic Spectra of Trapping Sets in Regular and Irregular LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.

[37]  Lara Dolecek,et al.  Analysis of Absorbing Sets and Fully Absorbing Sets of Array-Based LDPC Codes , 2009, IEEE Transactions on Information Theory.

[38]  Sergey Bereg,et al.  Transforming Graphs with the Same Graphic Sequence , 2017, J. Inf. Process..

[39]  Raphael Yuster,et al.  Finding Even Cycles Even Faster , 1994, SIAM J. Discret. Math..

[40]  Shu Lin,et al.  On Short Cycle Enumeration in Biregular Bipartite Graphs , 2017, IEEE Transactions on Information Theory.

[41]  J. Sirán,et al.  Moore Graphs and Beyond: A survey of the Degree/Diameter Problem , 2013 .

[42]  Sandro Bellini,et al.  Thresholds of Absorbing Sets in Low-Density Parity-Check Codes , 2017, IEEE Transactions on Communications.

[43]  Marcel Ambroze,et al.  On the Minimum/Stopping Distance of Array Low-Density Parity-Check Codes , 2012, IEEE Transactions on Information Theory.

[44]  Amir H. Banihashemi,et al.  Hardness Results on Finding Leafless Elementary Trapping Sets and Elementary Absorbing Sets of LDPC Codes , 2019, IEEE Transactions on Information Theory.

[45]  Roxana Smarandache,et al.  Quasi-Cyclic LDPC Codes: Influence of Proto- and Tanner-Graph Structure on Minimum Hamming Distance Upper Bounds , 2009, IEEE Transactions on Information Theory.

[46]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[47]  Amir H. Banihashemi,et al.  Efficient Search of Girth-Optimal QC-LDPC Codes , 2016, IEEE Transactions on Information Theory.

[48]  Amir H. Banihashemi,et al.  Spatially Coupled LDPC Codes With Small Constraint Length and Low Error Floor , 2020, IEEE Communications Letters.

[49]  Amir H. Banihashemi,et al.  Design of Finite-Length Irregular Protograph Codes with Low Error Floors over the Binary-Input AWGN Channel Using Cyclic Liftings , 2012, IEEE Transactions on Communications.

[50]  Florian Hug,et al.  Searching for Voltage Graph-Based LDPC Tailbiting Codes With Large Girth , 2011, IEEE Transactions on Information Theory.

[51]  Amir H. Banihashemi,et al.  New Characterization and Efficient Exhaustive Search Algorithm for Leafless Elementary Trapping Sets of Variable-Regular LDPC Codes , 2016, IEEE Transactions on Information Theory.

[52]  Amir H. Banihashemi,et al.  Characterization of Elementary Trapping Sets in Irregular LDPC Codes and the Corresponding Efficient Exhaustive Search Algorithms , 2018, IEEE Transactions on Information Theory.

[53]  Dejan Vukobratovic,et al.  Transactions papers evaluation and design of irregular LDPC codes using ACE spectrum , 2009, IEEE Transactions on Communications.

[54]  Hua Xiao,et al.  Improved progressive-edge-growth (PEG) construction of irregular LDPC codes , 2004, IEEE Communications Letters.

[55]  Priti Shankar,et al.  Computing the Stopping Distance of a Tanner Graph Is NP-Hard , 2007, IEEE Transactions on Information Theory.

[56]  Stephen Bates,et al.  Construction of low-density parity-check convolutional codes through progressive edge-growth , 2005, IEEE Communications Letters.

[57]  Jong-Seon No,et al.  Design of Multiple-Edge Protographs for QC LDPC Codes Avoiding Short Inevitable Cycles , 2012, IEEE Transactions on Information Theory.

[58]  C. K. Michael Tse,et al.  Constructing Short-Length Irregular LDPC Codes with Low Error Floor , 2010, IEEE Transactions on Communications.

[59]  Amir H. Banihashemi,et al.  From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes , 2017, IEEE Transactions on Information Theory.

[60]  Robert C. Williamson,et al.  Loop removal from LDPC codes , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[61]  Amir H. Banihashemi,et al.  Low-Density Parity-Check Lattices: Construction and Decoding Analysis , 2006, IEEE Transactions on Information Theory.

[62]  David Burshtein,et al.  Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.

[63]  Shlomo Hoory,et al.  The Size of Bipartite Graphs with a Given Girth , 2002, J. Comb. Theory, Ser. B.

[64]  Manabu Hagiwara,et al.  Comment on "Quasi-Cyclic Low Density Parity Check Codes From Circulant Permutation Matrices" , 2009, IEEE Trans. Inf. Theory.

[65]  Amir H. Banihashemi,et al.  Lowering the error floor of LDPC codes using cyclic liftings , 2010, 2010 IEEE International Symposium on Information Theory.

[66]  M. E. O'Sullivan,et al.  Algebraic construction of sparse matrices with large girth , 2006, IEEE Transactions on Information Theory.

[67]  Amir H. Banihashemi,et al.  Construction of QC LDPC Codes With Low Error Floor by Efficient Systematic Search and Elimination of Trapping Sets , 2019, IEEE Transactions on Communications.

[68]  William E. Ryan,et al.  Enumerators for Protograph-Based Ensembles of LDPC and Generalized LDPC Codes , 2011, IEEE Transactions on Information Theory.