Perovskite solar cells fabricated using dicarboxylic fullerene derivatives

Perovskite solar cells were first fabricated in dye sensitized solar cells. But also, perovskite hybrid solar cells were demonstrated to be among the most promising candidates within the emerging photovoltaic materials with their high power conversion efficiencies and low-cost fabrication. In this work, we design and synthesize a novel benzoic acid fullerene bis adduct material (BAFB) for use in perovskite hybrid organic–inorganic solar cells. The obtained maximum efficiency is reported to be 9.63% using a novel benzoic acid fullerene bis adduct (BAFB) for perovskite heterojunction solar cells.

[1]  J. L. Delgado,et al.  Organic Charge Carriers for Perovskite Solar Cells. , 2015, ChemSusChem.

[2]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[3]  Facile synthesis and photovoltaic applications of a new alkylated bismethano fullerene as electron acceptor for high open circuit voltage solar cells , 2015 .

[4]  S. Erten‐Ela,et al.  Pyrrolidino [60] and [70]fullerene homo- and heterodimers as electron acceptors for OPV , 2015 .

[5]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[6]  Q. Meng,et al.  Perovskite thin-film solar cell: excitation in photovoltaic science , 2015, Science China Chemistry.

[7]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[8]  S. Erten‐Ela,et al.  The performance studies on swallow-tailed naphthalene diimide derivatives in solution processed inverted bulk heterojunction solar cells , 2014 .

[9]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[10]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[11]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[12]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[13]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[14]  Yaming Yu,et al.  NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .

[15]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[16]  B. Lotsch New light on an old story: perovskites go solar. , 2014, Angewandte Chemie.

[17]  Y. Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[18]  Juan Bisquert,et al.  General working principles of CH3NH3PbX3 perovskite solar cells. , 2014, Nano letters.

[19]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[20]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[21]  Gary Hodes,et al.  Perovskite-Based Solar Cells , 2013, Science.

[22]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[23]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[24]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[25]  Guangda Niu,et al.  Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance , 2013 .

[26]  Lei Jiang,et al.  Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture , 2013 .

[27]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[28]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[29]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[30]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[31]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[32]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[33]  Johannes C. Brendel,et al.  Solid-state dye-sensitized solar cells fabricated with nanoporous TiO2 and TPD dyes: Analysis of penetration behavior and I–V characteristics , 2011 .

[34]  S. Icli,et al.  Hybrid solar cells using nanorod zinc oxide electrodes and perylene monoimide–monoanhydride dyes , 2010 .

[35]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[36]  Ş. Erten,et al.  Bilayer heterojunction solar cell based on naphthalene bis-benzimidazole , 2008 .