LONG-TERM FORECASTING OF INFLUENZA-LIKE ILLNESSES IN RUSSIA

This paper compares the feasible methods for the long-term fore- casting of the incidence rates of influenza-like illnesses (ILI) and acute respira- tory infections (ARI), which is important for strategic management. A litera- ture survey shows that the most appropriate techniques for long-term ILI & ARI morbidity projections are the following well-known statistical methods: simple averaging of observations, point-to-point linear estimates, Serfling-type regres- sion models, autoregressive models such as autoregressive integrated moving average (ARIMA) models, and generalized exponential smoothing using the Holt-Winters approach. Using these methods and official dataon the total number of ILI & ARI cases per week in 2000-2012 in Moscow, St. Petersburg, Novosibirsk, Yekaterinburg, Nizhny Novgorod and Yakutsk, we developed one- year projections and evaluated their accuracy. Different methods yielded the best results, depending on the time series. Generally, it is preferable to use the Serfling model. The Serfling model forecasts almost matched the point- to-point linear estimates. In certain cases, ARIMA outperformed the Serfling model. Simple averaging can ensure a fairly good prediction when the ILI & ARI time series do not exhibit a trend. The results of exponential smoothing were poorer than those of other techniques.

[1]  R. Kiang,et al.  Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand. , 2006, Geospatial health.

[2]  Cécile Viboud,et al.  Prediction of the spread of influenza epidemics by the method of analogues. , 2003, American journal of epidemiology.

[3]  R. Hope-Simpson,et al.  A new concept of the epidemic process of influenza A virus , 1987, Epidemiology and Infection.

[4]  G. Sirakoulis,et al.  A cellular automaton model for the effects of population movement and vaccination on epidemic propagation , 2000 .

[5]  Paul H. Garthwaite,et al.  Statistical methods for the prospective detection of infectious disease outbreaks: a review , 2012 .

[6]  R. Serfling Methods for current statistical analysis of excess pneumonia-influenza deaths. , 1963, Public health reports.

[7]  Cecile Viboud,et al.  Impact of influenza vaccination on seasonal mortality in the US elderly population. , 2005, Archives of internal medicine.

[8]  P. Rohani,et al.  Mathematical Modeling of Infectious Diseases Dynamics , 2006 .

[9]  Monica F. Myers,et al.  Forecasting disease risk for increased epidemic preparedness in public health. , 2000, Advances in parasitology.

[10]  L. Bao A new infectious disease model for estimating and projecting HIV/AIDS epidemics , 2012, Sexually Transmitted Infections.

[11]  H. Burkom Development, adaptation, and assessment of alerting algorithms for biosurveillance , 2003 .

[12]  A. Kendal,et al.  Impact of influenza epidemics on mortality in the United States from October 1972 to May 1985. , 1987, American journal of public health.

[13]  Lucia Russo,et al.  Mathematical modeling of infectious disease dynamics , 2013, Virulence.

[14]  Y. Gel,et al.  Influenza Forecasting with Google Flu Trends , 2013, PloS one.

[15]  Richard K. Kiang,et al.  Modeling Influenza Transmission Using Environmental Parameters , 2010 .

[16]  Influenza-Associated Hospitalization in a Subtropical City , 2006, PLoS Medicine.

[17]  L. Simonsen,et al.  The impact of influenza epidemics on mortality: introducing a severity index. , 1997, American journal of public health.

[18]  Tom Burr,et al.  Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance , 2005, BMC Medical Informatics Decis. Mak..

[19]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[20]  Ozgur M. Araz,et al.  A pandemic influenza simulation model for preparedness planning , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[21]  Alessandro Vespignani,et al.  Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study , 2007, BMC medicine.

[22]  Galit Shmueli,et al.  Automated time series forecasting for biosurveillance , 2007, Statistics in medicine.

[23]  Jari Saramäki,et al.  Modelling development of epidemics with dynamic small-world networks. , 2005, Journal of theoretical biology.

[24]  T. Das,et al.  A large-scale simulation model of pandemic influenza outbreaks for development of dynamic mitigation strategies , 2008 .

[25]  E. Waldman,et al.  Effectiveness of influenza vaccination and its impact on health inequalities. , 2007, International journal of epidemiology.

[26]  Theresa L. Utlaut,et al.  Introduction to Time Series Analysis and Forecasting , 2008 .

[27]  S. Blower,et al.  Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) , 2009, BMC medicine.

[28]  M. Halloran,et al.  Finding optimal vaccination strategies for pandemic influenza using genetic algorithms. , 2005, Journal of theoretical biology.

[29]  Everette S. Gardner,et al.  Exponential smoothing: The state of the art , 1985 .

[30]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[31]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[32]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[33]  A. Sumi,et al.  MEM spectral analysis for predicting influenza epidemics in Japan , 2012, Environmental Health and Preventive Medicine.

[34]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[35]  Gerard Borsboom,et al.  Forecasting malaria incidence from historical morbidity patterns in epidemic‐prone areas of Ethiopia: a simple seasonal adjustment method performs best , 2002, Tropical medicine & international health : TM & IH.

[36]  Eric Forgoston,et al.  Accurate noise projection for reduced stochastic epidemic models , 2009, Chaos.

[37]  Benjamin J Cowling,et al.  Methods for monitoring influenza surveillance data. , 2006, International journal of epidemiology.

[38]  Steven C. Wheelwright,et al.  Forecasting methods and applications. , 1979 .

[39]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[40]  Markus Schwehm,et al.  The influenza pandemic preparedness planning tool InfluSim , 2007, BMC infectious diseases.

[41]  Y. Ohkusa,et al.  Simulation model of pandemic influenza in the whole of Japan. , 2009, Japanese journal of infectious diseases.

[42]  Dennis L. Chao,et al.  FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model , 2010, PLoS Comput. Biol..

[43]  R. Davis,et al.  Influenza and the rates of hospitalization for respiratory disease among infants and young children. , 2000, The New England journal of medicine.

[44]  Rob J Hyndman,et al.  Automatic Time Series Forecasting: The forecast Package for R , 2008 .

[45]  Kwok-Hung Chan,et al.  Influenza-related hospitalizations among children in Hong Kong. , 2002, The New England journal of medicine.

[46]  Rainer Schmidt,et al.  Influenza Forecast: Case-Based Reasoning or Statistics? , 2007, KES.

[47]  Bert Veenendaal,et al.  Disease surveillance using a hidden Markov model , 2009, BMC Medical Informatics Decis. Mak..

[48]  S. Thacker,et al.  Mortality during influenza epidemics in the United States, 1967-1978. , 1982, American journal of public health.

[49]  P. Sebastiani,et al.  A Bayesian dynamic model for influenza surveillance , 2006, Statistics in medicine.

[50]  Xinhai Li,et al.  Validation of the Gravity Model in Predicting the Global Spread of Influenza , 2011, International journal of environmental research and public health.

[51]  Kenneth D. Mandl,et al.  Time series modeling for syndromic surveillance , 2003, BMC Medical Informatics Decis. Mak..

[52]  Camille Pelat,et al.  Online detection and quantification of epidemics , 2007, BMC Medical Informatics Decis. Mak..

[53]  A. Rinaldo,et al.  Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections , 2012, Proceedings of the National Academy of Sciences.

[54]  Adhistya Erna Permanasari,et al.  Forecasting method selection using ANOVA and Duncan multiple range tests on time series dataset , 2010, 2010 International Symposium on Information Technology.

[55]  Keiji Fukuda,et al.  Mortality associated with influenza and respiratory syncytial virus in the United States. , 2003, JAMA.

[56]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[57]  David Moriña,et al.  A statistical model for hospital admissions caused by seasonal diseases , 2011, Statistics in medicine.

[58]  D. Y. Rowland,et al.  Multivariate Markovian modeling of tuberculosis: forecast for the United States. , 2000, Emerging infectious diseases.

[59]  Stephen E. Fienberg,et al.  Current and Potential Statistical Methods for Monitoring Multiple Data Streams for Biosurveillance , 2006 .

[60]  F. Chew,et al.  Seasonal trends of viral respiratory tract infections in the tropics , 1998, Epidemiology and Infection.

[61]  A. Flahault,et al.  Medication Sales and Syndromic Surveillance, France , 2006, Emerging infectious diseases.

[62]  J. Crilly,et al.  Prediction and surveillance of influenza epidemics , 2011, The Medical journal of Australia.

[63]  J. Shaman,et al.  Forecasting seasonal outbreaks of influenza , 2012, Proceedings of the National Academy of Sciences.

[64]  Chris Chatfield,et al.  The Holt-Winters Forecasting Procedure , 1978 .

[65]  O. Bjørnstad,et al.  Travelling waves and spatial hierarchies in measles epidemics , 2001, Nature.

[66]  Wen-Hsien Ho,et al.  Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model , 2011, Comput. Math. Methods Medicine.

[67]  Dejian Lai,et al.  Monitoring the SARS Epidemic in China: A Time Series Analysis , 2005, Journal of Data Science.

[68]  George Athanasopoulos,et al.  Forecasting: principles and practice , 2013 .

[69]  Yanping Bai,et al.  Prediction of SARS epidemic by BP neural networks with online prediction strategy , 2005 .

[70]  Richard K. Kiang,et al.  Modeling and Predicting Seasonal Influenza Transmission in Warm Regions Using Climatological Parameters , 2010, PloS one.

[71]  Chris Chatfield,et al.  Holt‐Winters Forecasting: Some Practical Issues , 1988 .

[72]  F. Carrat,et al.  Monitoring epidemiologic surveillance data using hidden Markov models. , 1999, Statistics in medicine.

[73]  S. Dowell,et al.  Seasonal variation in host susceptibility and cycles of certain infectious diseases. , 2001, Emerging infectious diseases.