Preface Organizing Committee Program Committee Usefulness as the Criterion for Evaluation of Interactive Information Retrieval Systems Semi-supervised Priors for Microblog Language Identification Scope of Negation Detection in Sentiment Analysis a Multi-dimensional Model for Search Intent Result Div

DIR 2011, the 11th Dutch-Belgian Information Retrieval Workshop, was organized by the Information and Language Processing group (ILPS) of the University of Amsterdam in collaboration with the Centrum Wiskunde en Informatica (CWI). Two types of submissions were accepted for the workshop: research papers describing original research, compressed contributions presenting a summary of previously published work, and demonstrations. There were many people who helped organize DIR 2011, making it a success. We would like to thank them all. In particular, we are gratefull to our keynote speakers, Nick Belkin (Rutgers University) and Gabriella Kazai (Microsoft Research). Relevance has been the classic criterion for evaluation of the effectiveness of information retrieval (IR) systems since the earliest days of IR system evaluation. This criterion has been understood as the ability of an IR system to recognize documents relevant to a person's " information need " , and understood as the ability of the system to provide to the person all of the documents in an information resource relevant to that need, and only those documents relevant to the need. The measures of effectiveness of the system have thus been understood as recall and precision. These measures have been applied in the evaluation of the performance of an IR system as referring to the system's ability to maximize these measures in its response to a single query (representation of the information need) put to the system. This criterion, these measures, and the application of the measures depend crucially on both a specific model of IR, and a specific model of the user's desired results, both of which are based on the example of the special purpose bibliography of a topic constructed on demand by documentalists and science librarians in the early and middle 20th century. In this presentation, I argue that the criterion, measures, and application of those measures based on this example are inappropriate for the general interactive IR situation and evaluation of interactive IR systems, and propose that the usefulness of the IR system in supporting the goal or task which led the person to engage in information seeking should be the basic criterion according to which an IR system is evaluated. In particular, I argue that the relevance criterion and its associated measures cannot be used alone to evaluate the performance of an IR system over an information seeking episode, and that usefulness is a criterion which can be used to …

[1]  Flavius Frasincar,et al.  A semantic clustering-based approach for searching and browsing tag spaces , 2011, SAC.

[2]  Uzay Kaymak,et al.  A framework for automatic annotation of web pages using the Google rich snippets vocabulary , 2011, SAC.

[3]  Mounia Lalmas,et al.  Dynamics of Genre and Domain Intents , 2010, AIRS.

[4]  Cees Snoek,et al.  Crowdsourcing rock n' roll multimedia retrieval , 2010, ACM Multimedia.

[5]  Stephen E. Robertson,et al.  Extending average precision to graded relevance judgments , 2010, SIGIR.

[6]  Jaap Kamps,et al.  The importance of anchor text for ad hoc search revisited , 2010, SIGIR '10.

[7]  Valentin Jijkoun,et al.  Generating Focused Topic-Specific Sentiment Lexicons , 2010, ACL.

[8]  Maarten de Rijke,et al.  Search behavior of media professionals at an audiovisual archive: A transaction log analysis , 2010, J. Assoc. Inf. Sci. Technol..

[9]  M. de Rijke,et al.  Contextual factors for finding similar experts , 2010, J. Assoc. Inf. Sci. Technol..

[10]  Elizabeth Foss,et al.  Children's roles using keyword search interfaces at home , 2010, CHI.

[11]  Lora Aroyo,et al.  Emerging Practices in the Cultural Heritage Domain - Social Tagging of Audiovisual Heritage , 2010 .

[12]  Bernardo A. Huberman,et al.  Predicting the popularity of online content , 2008, Commun. ACM.

[13]  W. V. D. van den Heuvel,et al.  Expert search for radio and television: a case study amongst Dutch broadcast professionals , 2010 .

[14]  Fabrizio Silvestri,et al.  Mining Query Logs: Turning Search Usage Data into Knowledge , 2010, Found. Trends Inf. Retr..

[15]  H. Murase,et al.  Exploiting the Chronological Semantic Structure in a Large-scale Broadcast News Video Archive for its Efficient Exploration , 2010 .

[16]  Tao Qin,et al.  LETOR: A benchmark collection for research on learning to rank for information retrieval , 2010, Information Retrieval.

[17]  Stephen E. Robertson,et al.  On the choice of effectiveness measures for learning to rank , 2010, Information Retrieval.

[18]  Hiroshi Murase,et al.  Labeling News Topic Threads with Wikipedia Entries , 2009, 2009 11th IEEE International Symposium on Multimedia.

[19]  Nick Craswell,et al.  Overview of the TREC 2009 Web Track , 2009, TREC.

[20]  Paul Thomas,et al.  Overview of the TREC 2009 Entity Track , 2009, TREC.

[21]  Roberto Cornacchia,et al.  Searching CLEF-IP by Strategy , 2009, CLEF.

[22]  Stephen E. Robertson,et al.  Deep versus shallow judgments in learning to rank , 2009, SIGIR.

[23]  Emine Yilmaz,et al.  Document selection methodologies for efficient and effective learning-to-rank , 2009, SIGIR.

[24]  Ravi Kumar,et al.  For a few dollars less: Identifying review pages sans human labels , 2009, NAACL.

[25]  Daniel Gayo-Avello,et al.  A survey on session detection methods in query logs and a proposal for future evaluation , 2009, Inf. Sci..

[26]  Jeonghyun Kim,et al.  Describing and predicting information-seeking behavior on the Web , 2009, J. Assoc. Inf. Sci. Technol..

[27]  Johan Oomen,et al.  Images for the Future: Unlocking the Value of Audiovisual Heritage , 2009 .

[28]  Divesh Srivastava,et al.  Recommending Join Queries via Query Log Analysis , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[29]  Francesco Bonchi,et al.  Query suggestions using query-flow graphs , 2009, WSCD '09.

[30]  Leave a Reply , 2009 .

[31]  M. de Rijke,et al.  A language modeling framework for expert finding , 2009, Inf. Process. Manag..

[32]  Václav Snásel,et al.  Comparing Query Similarity Measures for Collaborative Web Search , 2008, 2008 Eighth International Conference on Intelligent Systems Design and Applications.

[33]  Jungi Kim,et al.  KLE at TREC 2008 Blog Track: Blog Post and Feed Retrieval , 2008, TREC.

[34]  Alberto Córdoba,et al.  Pattern Matching Techniques to Identify Syntactic Variations of Tags in Folksonomies , 2008, WSKS.

[35]  Ted Sanders,et al.  Children's information retrieval: beyond examining search strategies and interfaces , 2008 .

[36]  R. Baeza-Yates,et al.  The anatomy of a large query graph , 2008 .

[37]  Bart van den Hooff,et al.  Inside the source selection process: Selection criteria for human information sources , 2008, Inf. Process. Manag..

[38]  Deborah S. Chung,et al.  Interactive Features of Online Newspapers: Identifying Patterns and Predicting Use of Engaged Readers , 2008, J. Comput. Mediat. Commun..

[39]  Mehdi Hosseini,et al.  Clustering Search Engine Log for Query Recommendation , 2008 .

[40]  Krisztian Balog,et al.  People search in the enterprise , 2007, SIGF.

[41]  Peter Bailey,et al.  The CSIRO enterprise search test collection , 2007, SIGF.

[42]  Miriam J. Metzger Making sense of credibility on the Web: Models for evaluating online information and recommendations for future research , 2007, J. Assoc. Inf. Sci. Technol..

[43]  Hiroshi Murase,et al.  mediaWalker: a video archive explorer based on time-series semantic structure , 2007, ACM Multimedia.

[44]  Ricardo A. Baeza-Yates Mining Queries , 2007, ECML/PKDD.

[45]  Barry Smyth,et al.  Enhancing Case-Based, Collaborative Web Search , 2007, ICCBR.

[46]  Enrico Motta,et al.  Integrating Folksonomies with the Semantic Web , 2007, ESWC.

[47]  Roberto Cornacchia,et al.  A Parameterised Search System , 2007, ECIR.

[48]  Amanda Spink,et al.  Defining a session on Web search engines , 2007, J. Assoc. Inf. Sci. Technol..

[49]  Vasudeva Varma,et al.  A Novel Approach for Re-Ranking of Search Results Using Collaborative Filtering , 2007, 2007 International Conference on Computing: Theory and Applications (ICCTA'07).

[50]  Ricardo A. Baeza-Yates,et al.  Graphs from Search Engine Queries , 2007, SOFSEM.

[51]  Roberto Cornacchia,et al.  Flexible and efficient IR using array databases , 2007, The VLDB Journal.

[52]  ChengXiang Zhai,et al.  Mining long-term search history to improve search accuracy , 2006, KDD '06.

[53]  M. de Rijke,et al.  Formal models for expert finding in enterprise corpora , 2006, SIGIR.

[54]  Tantek Çelik,et al.  Microformats: a pragmatic path to the semantic web , 2006, WWW '06.

[55]  Gilad Mishne,et al.  A Study of Blog Search , 2006, ECIR.

[56]  Jamshid Beheshti,et al.  Interface Design, Web Portals, and Children , 2005, Libr. Trends.

[57]  Barry Smyth,et al.  A Comparative Analysis of Query Similarity Metrics for Community-Based Web Search , 2005, ICCBR.

[58]  Ricardo A. Baeza-Yates,et al.  Applications of Web Query Mining , 2005, ECIR.

[59]  Barry Smyth,et al.  An Analysis of Query Similarity in Collaborative Web Search , 2005, ECIR.

[60]  Walter Willinger,et al.  Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications , 2005, Internet Math..

[61]  Gerhard Weikum,et al.  Integrating DB and IR Technologies: What is the Sound of One Hand Clapping? , 2005, CIDR.

[62]  Alan F. Smeaton,et al.  Replicating Web Structure in Small-Scale Test Collections , 2004, Information Retrieval.

[63]  Djoerd Hiemstra,et al.  Parsimonious language models for information retrieval , 2004, SIGIR '04.

[64]  Barry Smyth,et al.  Further Experiments on Collaborative Ranking in Community-Based Web Search , 2004, Artificial Intelligence Review.

[65]  Ted Pedersen,et al.  WordNet::Similarity - Measuring the Relatedness of Concepts , 2004, NAACL.

[66]  Pertti Vakkari,et al.  Changes in Search Tactics and Relevance Judgements when Preparing a Research Proposal A Summary of the Findings of a Longitudinal Study , 2001, Information Retrieval.

[67]  P. Kantor Foundations of Statistical Natural Language Processing , 2001, Information Retrieval.

[68]  Stephen E. Robertson,et al.  On Collection Size and Retrieval Effectiveness , 2004, Information Retrieval.

[69]  R. Edmondson Audiovisual archiving : philosophy and principles , 2004 .

[70]  Dania Bilal Draw and tell: Children as designers of web interfaces , 2003, ASIST.

[71]  Miki Baumgarten,et al.  Kids and the internet: a developmental summary , 2003, CIE.

[72]  Frederick H. Lochovsky,et al.  Data extraction and label assignment for web databases , 2003, WWW '03.

[73]  Dania Bilal,et al.  Differences and similarities in information seeking: children and adults as Web users , 2002, Inf. Process. Manag..

[74]  Andrei Broder,et al.  A taxonomy of web search , 2002, SIGF.

[75]  Daqing He,et al.  Combining evidence for automatic Web session identification , 2002, Inf. Process. Manag..

[76]  Djoerd Hiemstra,et al.  The Importance of Prior Probabilities for Entry Page Search , 2002, SIGIR '02.

[77]  Jamshid Beheshti,et al.  Design criteria for children's Web portals: The users speak out , 2002, J. Assoc. Inf. Sci. Technol..

[78]  Valter Crescenzi,et al.  RoadRunner: Towards Automatic Data Extraction from Large Web Sites , 2001, VLDB.

[79]  Stephen E. Robertson,et al.  Effective site finding using link anchor information , 2001, SIGIR '01.

[80]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[81]  Eric Horvitz,et al.  Patterns of search: analyzing and modeling Web query refinement , 1999 .

[82]  J. Andreoli,et al.  Applying the Broadway Recommendation Computation Approach for Implementing a Query Reenement Service in the Cbkb Meta Search Engine , 1999 .

[83]  Larry Fitzpatrick,et al.  Automatic feedback using past queries: social searching? , 1997, SIGIR '97.

[84]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[85]  David L. Altheide Qualitative Media Analysis , 1996 .

[86]  Penelope A. Moore,et al.  Children as Information Seekers: The Cognitive Demands of Books and Library Systems. , 1991 .

[87]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[88]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[89]  Robert S. Taylor The process of asking questions , 1962 .

[90]  P.-C.-F. Daunou,et al.  Mémoire sur les élections au scrutin , 1803 .