IL-2 reduces graft-versus-host disease and preserves a graft-versus-leukemia effect by selectively inhibiting CD4+ T cell activity.

We have recently demonstrated, in a fully MHC-mismatched murine bone marrow transplantation model, that administration of a short course of high dose IL-2 markedly diminishes graft-vs-host disease (GVHD) without compromising alloengraftment or the graft-vs-leukemia (GVL) effect of allogeneic T cells. We have now evaluated the mechanism of the dissociation of GVL and GVHD observed in this model. We demonstrate that CD4+ T cells were required to produce severe, acute GVHD in the fully MHC-mismatched plus minor histocompatibility Ag-mismatched A/J-->B10 strain combination. The GVHD-producing activity of A/J CD4+ T cells administered without CD8+ T cells was inhibited by IL-2 treatment. In contrast, CD8+ T cells alone mediated the GVL effect observed in the EL4 leukemia/lymphoma model, and CD4+ cells did not contribute to this effect. This CD8-mediated GVL activity was not inhibited by IL-2 treatment. Because naive A/J CD8+ T cells administered without CD4+ T cells did not produce acute GVHD, we were unable to evaluate the effect of IL-2 in this model. However, when A/J donors were presensitized with B10 skin grafts, CD4-depleted A/J spleen cells were capable of causing acute GVHD in B10 recipients. This CD8-mediated GVHD was not inhibited by treatment with IL-2. However, IL-2 did partially inhibit the GVHD produced by nondepleted presensitized A/J spleen cells, probably due to selective inhibition of the function of presensitized A/J CD4+ T cells. The dissociation of GVHD and GVL against the EL4 leukemia/lymphoma in IL-2-treated mice can therefore be explained by selective inhibition by IL-2 of CD4 activity.