Squamabietenols A-F, undescribed abietane-O-abietane dimeric diterpenoids from the ornamental conifer Juniperus squamata and their ATP-citrate lyase inhibitory activities.

[1]  A. Goldberg,et al.  Review of recent clinical trials and their impact on the treatment of hypercholesterolemia. , 2022, Progress in cardiovascular diseases.

[2]  Xinmiao Liang,et al.  Discovery and characterization of novel ATP citrate lyase inhibitors from natural products by a luminescence-based assay. , 2022, Chemico-biological interactions.

[3]  Han Zhou,et al.  Discovery of Flavonoids as Novel Inhibitors of ATP Citrate Lyase: Structure–Activity Relationship and Inhibition Profiles , 2022, International journal of molecular sciences.

[4]  Y. Kuo,et al.  Chemical constituents and their anti-neuroinflammatory activities from the bark of Taiwan incense cedar, Calocedrus formosana. , 2022, Phytochemistry.

[5]  Xiao-Quan Wang,et al.  Phylogeny and evolution of Cupressaceae: updates on intergeneric relationships and new insights on ancient intergeneric hybridization. , 2022, Molecular phylogenetics and evolution.

[6]  G. Paré,et al.  Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. , 2022, Cell metabolism.

[7]  N. Sahoo,et al.  Functionalized graphene oxide based nanocarrier for enhanced cytotoxicity of Juniperus squamata root essential oil against breast cancer cells , 2022, Journal of Drug Delivery Science and Technology.

[8]  C. Granchi ATP-citrate lyase (ACLY) inhibitors as therapeutic agents: a patenting perspective , 2022, Expert opinion on therapeutic patents.

[9]  Jun Yu Li,et al.  Structurally diverse mono-/dimeric triterpenoids from the vulnerable conifer Pseudotsuga gaussenii and their PTP1B inhibitory effects. The role of protecting species diversity in support of chemical diversity. , 2022, Bioorganic chemistry.

[10]  H. Sénéchal,et al.  Republication de : Les Cupressacées des cinq continents , 2022, Revue Française d'Allergologie.

[11]  Rizwan Kalani,et al.  Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association , 2022, Circulation.

[12]  Bowen Tang,et al.  Anti-inflammatory sesquiterpenoids from the heartwood of Juniperus formosana Hayata. , 2021, Fitoterapia.

[13]  Xiaonian Li,et al.  Structure elucidation, biogenesis, and bioactivities of acylphloroglucinol-derived meroterpenoid enantiomers from Dryopteris crassirhizoma. , 2021, Bioorganic chemistry.

[14]  Yi Zang,et al.  Forrestiacids C and D, unprecedented triterpene-diterpene adducts from Pseudotsuga forrestii , 2021, Chinese Chemical Letters.

[15]  G. Appendino,et al.  Agathadiol, a labdane diterpenoid from juniper berries, is a positive allosteric modulator of CB1R. , 2021, Fitoterapia.

[16]  M. Hamann,et al.  Forrestiacids A and B, Pentaterpene Inhibitors of ACL and Lipogenesis: Extending the limits of Computational NMR Methods in the Structure Assignment of Complex Natural Products. , 2021, Angewandte Chemie.

[17]  N. Bettach,et al.  Isolation, characterization, and antimicrobial activity of communic acid from Juniperus phoenicea , 2021, Journal of complementary & integrative medicine.

[18]  Sung-Dae Cho,et al.  In vitro induction of mitotic catastrophe as a therapeutic approach for oral cancer using the ethanolic extract of Juniperus squamata. , 2021, Oncology reports.

[19]  Kangshan Mao,et al.  Building a reference transcriptome for Juniperus squamata (Cupressaceae) based on single-molecule real-time sequencing , 2021, BMC Genomic Data.

[20]  Gregory W. Stull,et al.  Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms , 2021, Nature Plants.

[21]  M. Aghaei,et al.  15-Hydroxy-8(17),13(E)-labdadiene-19-carboxylic acid (HLCA) inhibits proliferation and induces cell cycle arrest and apoptosis in ovarian cancer cells. , 2020, Life sciences.

[22]  B. Simoneit,et al.  Monoterpenylabietenoids, novel biomarkers from extant and fossil Taxodioideae and sedimentary rocks , 2020 .

[23]  R. Graf,et al.  13C CPMAS NMR as a Tool for Full Structural Description of 2-Phenyl Substituted Imidazoles That Overcomes the Effects of Fast Tautomerization , 2020, Molecules.

[24]  Dennis A. Infante-Rodríguez,et al.  Comprehensive profiling and identification of bioactive components from methanolic leaves extract of Juniperus deppeana and its in vitro antidiabetic activity , 2020, Canadian Journal of Chemistry.

[25]  Hui Xie,et al.  Molecular Identification Based on Chloroplast Sequences and Anti-complementary Activity Comparison of Juniperus Samples from the Qinghai-Tibet Plateau , 2020, Planta Medica.

[26]  Chung-Shien Wu,et al.  The Origin and Evolution of Plastid Genome Downsizing in Southern Hemispheric Cypresses (Cupressaceae) , 2020, Frontiers in Plant Science.

[27]  A. Markham Bempedoic Acid: First Approval , 2020, Drugs.

[28]  David J Newman,et al.  Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. , 2020, Journal of natural products.

[29]  M. Sussman,et al.  The effect of developmental and environmental factors on secondary metabolites in medicinal plants. , 2020, Plant physiology and biochemistry : PPB.

[30]  Dao-feng Chen,et al.  A new abietane diterpene and anti-complementary constituents from Juniperus tibetica , 2020, Natural product research.

[31]  Jia Li,et al.  Spirobiflavonoid stereoisomers from the endangered conifer Glyptostrobus pensilis and their protein tyrosine phosphatase 1B inhibitory activity. , 2019, Bioorganic & medicinal chemistry letters.

[32]  K. Bogolitsyn,et al.  Selective extraction of terpenoid compounds of Juniperus communis L. wood in the medium of a binary solvent (supercritical CO2 with modifier). , 2019, Phytochemical analysis : PCA.

[33]  Sheng-Yang Wang,et al.  Two new dimeric abietane-type diterpenoids from the bark of Cryptomeria japonica and their enzyme inhibitory activity , 2019, Phytochemistry Letters.

[34]  D. Atha,et al.  Potential anti-neuroblastoma agents from Juniperus oblonga. , 2019, Biochemical and biophysical research communications.

[35]  Fyaz M. D. Ismail,et al.  Growth inhibitory activity of biflavonoids and diterpenoids from the leaves of the Libyan Juniperus phoenicea against human cancer cells , 2019, Phytotherapy research : PTR.

[36]  M. Abdel-Kader,et al.  Characterization and hepatoprotective evaluation of sesquiterpenes and diterpenes from the aerial parts of Juniperus sabina L. , 2019, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society.

[37]  Guangying Chen,et al.  Bioactive Meroterpenoids and Isocoumarins from the Mangrove-Derived Fungus Penicillium sp. TGM112. , 2019, Journal of natural products.

[38]  Khutsishvili,et al.  Labdane and Abietane Diterpenoids from Juniperus oblonga and Their Cytotoxic Activity , 2019, Molecules.

[39]  Ting Huang,et al.  Phytochemical and biological studies on rare and endangered plants endemic to China. Part XV. Structurally diverse diterpenoids and sesquiterpenoids from the vulnerable conifer Pseudotsuga sinensis. , 2019, Phytochemistry.

[40]  A. Seca,et al.  The Current Status of the Pharmaceutical Potential of Juniperus L. Metabolites , 2018, Medicines.

[41]  G. Lupidi,et al.  Bioactive Constituents of Juniperus turbinata Guss. from La Maddalena Archipelago , 2018, Chemistry & biodiversity.

[42]  V. De Feo,et al.  Influence of environmental factors on content and composition of essential oil from common juniper ripe berry cones (Juniperus communis L.) , 2018 .

[43]  V. Sukhatme,et al.  Design and synthesis of emodin derivatives as novel inhibitors of ATP-citrate lyase. , 2017, European journal of medicinal chemistry.

[44]  Hao Hu,et al.  Naturally Occurring Diterpenoid Dimers: Source, Biosynthesis, Chemistry and Bioactivities , 2016, Planta Medica.

[45]  Tahira Bibi,et al.  Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan. , 2015, Journal of ethnopharmacology.

[46]  Yan Xiao Chemical constituents of Sabina squamata(1) , 2015 .

[47]  R. DeFronzo,et al.  Non-Alcoholic Fatty Liver Disease (NAFLD) and Its Connection with Insulin Resistance, Dyslipidemia, Atherosclerosis and Coronary Heart Disease , 2013, Nutrients.

[48]  G. Bringmann,et al.  SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. , 2013, Chirality.

[49]  Jin-Hua Ran,et al.  Three genome-based phylogeny of Cupressaceae s.l.: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. , 2012, Molecular phylogenetics and evolution.

[50]  Todd E. Dawson,et al.  Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers , 2012, Proceedings of the National Academy of Sciences.

[51]  Libing Zhang,et al.  Distribution of living Cupressaceae reflects the breakup of Pangea , 2012, Proceedings of the National Academy of Sciences.

[52]  Sheng Yao,et al.  Bicunningines A and B, two new dimeric diterpenes from Cunninghamia lanceolata. , 2012, Organic letters.

[53]  Annie Falguiéres,et al.  Podophyllotoxin and deoxypodophyllotoxin in Juniperus bermudiana and 12 other Juniperus species: optimization of extraction, method validation, and quantification. , 2011, Journal of agricultural and food chemistry.

[54]  Lin Tao,et al.  Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting , 2011, Proceedings of the National Academy of Sciences.

[55]  X. Gong,et al.  Terpenoids and norlignans from Metasequoia glyptostroboides. , 2011, Journal of natural products.

[56]  B. Demirci,et al.  Antifungal and Insecticidal Activity of two Juniperus Essential Oils , 2009, Natural product communications.

[57]  Rod Peakall,et al.  Inference of higher-order conifer relationships from a multi-locus plastid data set , 2008 .

[58]  Toshinori Tanaka,et al.  Three abietane diterpenes and two diterpenes incorporated sesquiterpenes from the bark of Cryptomeria japonica. , 2006, Chemical & pharmaceutical bulletin.

[59]  Y. Kuo,et al.  Calocedimers A, B, C, and D from the bark of Calocedrus macrolepis var. formosana. , 2006, Journal of natural products.

[60]  Y. Kuo,et al.  Formosadimers A, B, and C from the Bark of Calocedrus macrolepis var. formosana. , 2005, Chemical & pharmaceutical bulletin.

[61]  A. Tomida,et al.  Taxoids and abietanes from callus cultures of Taxus cuspidata. , 2005, Journal of natural products.

[62]  D. Staerk,et al.  Labdanes and isopimaranes from Platycladus orientalis and their effects on erythrocyte membrane and on Plasmodium falciparum growth in the erythrocyte host cells. , 2004, Journal of natural products.

[63]  S. Arihara,et al.  A new abietane and two dimeric abietane diterpenes from the black heartwood of Cryptomeria japonica. , 2004, Chemical & pharmaceutical bulletin.

[64]  K. Kuroda,et al.  Comparison of terpenes in extracts from the resin and the bark of the resinous stem canker ofChamaecyparis obtusa andThujopsis dolabrata var.hondae , 2002, Journal of Wood Science.

[65]  K. Kuroda,et al.  A new diterpene dimer from the bark ofChamaecyparis obtusa , 2001, Journal of Wood Science.

[66]  N. Tomaru,et al.  Molecular phytogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes , 1995, Theoretical and Applied Genetics.

[67]  Y. Kuo,et al.  Cytotoxic Constituents of the Leaves of Calocedrus Formosana , 2003 .

[68]  Han-Dong Sun,et al.  Non-taxane compounds from the bark of Taxus yunnanensis , 2002, Journal of Asian natural products research.

[69]  M. L. Quinn,et al.  Plants used against cancer - an extension of the work of Jonathan Hartwell. , 2000, Journal of ethnopharmacology.

[70]  H. Tachida,et al.  Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. , 2000, American journal of botany.

[71]  Christopher J. Quinn,et al.  Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. , 2000, American journal of botany.

[72]  M. Jager,et al.  Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. , 1998, American journal of botany.

[73]  Y. Kuo,et al.  Three Labdane‐Type Diterpenes from the Bark of Juniperus formosana HAY. var. concolor HAY. , 1996 .

[74]  Y. Kuo,et al.  Diterpenes from the Heartwood of Juniperus formosana HAY. var. concolor HAY. , 1996 .

[75]  Jim-Min Fang,et al.  Diterpenoids from leaves of Cryptomeria japonica , 1996 .

[76]  R. Mill,et al.  Taxodiaceae , 1995, Plants of the Rio Grande Delta.

[77]  G. Topçu,et al.  Diterpenoids from Salvia heldrichiana , 1995 .

[78]  Jim-Min Fang,et al.  Diterpenes from pericarps of Chamaecyparis formosensis , 1995 .

[79]  Y. Kuo,et al.  Three New Diterpenes, 1, 3-Dioxototarol, Isototarolenone, and 1-Oxo-3β-hydroxytotarol, form the Roots of Juniperus chinensis LINN. , 1994 .

[80]  D. Soltis,et al.  Phylogenetic Relationships among the Genera of Taxodiaceae and Cupressaceae: Evidence from rbcL Sequences , 1994 .

[81]  M. Alemayehu,et al.  The Gamma Gauche Substituent Effect in 13C NMR1 , 1993 .

[82]  I. Kubo,et al.  Complete 1H and 13C NMR assignments of totarol and its derivatives , 1991 .

[83]  J. Cárdenas,et al.  The pimarane-type diterpenoids of Salvia microphylla var. neurepia. , 1989, Planta medica.

[84]  S. Faizi,et al.  TRICYCLIC DITERPENOIDS FROM THE STEM BARK OF AZADIRACHTA INDICA , 1988 .

[85]  V. Kaul,et al.  Constituents of Juniperus recurva var. squamata Oil. , 1988, Planta medica.

[86]  L. Quijano,et al.  Labdane diterpenes from Brickellia glomerata , 1987 .

[87]  T. E. Goodwin,et al.  Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances. XXXVII. Structure of hallol , 1975 .

[88]  D. Doddrell,et al.  Pyridine-induced solvent shifts in the nuclear magnetic resonance spectra of hydroxylic compounds , 1968 .