Shock fluctuations in a particle system

The hydrodynamical behavior of the one-dimensional nearest neighbor asymmetric simple exclusion process is described by the inviscid Burgers equation. This equation has shock wave solutions and when the density before the shock is 0, the shock, at the particle level, has stable shape and rigidly fluctuates around its average position with Brownian law, [20] and [8]. We prove here that in the hydrodynamical limit such fluctuations are determined exclusively by the initial particle configuration and are not influenced by the randomness produced by the evolution Le comportement hydrodynamique du processus de simple exclusion entre plus proches voisins asymmetriques en dimension un est decrit par l'equation de Burgers inviscide. Cette equation a des solutions ondes de choc, et quand la densite est nulle en avant du choc, le choc au niveau particulaire a une forme stable et fluctue

[1]  Errico Presutti,et al.  The weakly asymmetric simple exclusion process , 1989 .

[2]  Jean-Pierre Fouque,et al.  Hydrodynamical Limit for the Asymmetric Simple Exclusion Process , 1987 .

[3]  Pablo A. Ferrari The Simple Exclusion Process as Seen from a Tagged Particle , 1986 .

[4]  C. Boldrighini,et al.  Computer simulation of shock waves in the completely asymmetric simple exclusion process , 1989 .

[5]  E. Presutti,et al.  Convergence of stochastic cellular automation to Burger's equation: fluctuations and stability , 1988 .

[6]  Pablo A. Ferrari,et al.  Self-diffusion in one-dimensional lattice gases in the presence of an external field , 1985 .

[7]  W. David Wick,et al.  A dynamical phase transition in an infinite particle system , 1985 .

[8]  Maury Bramson,et al.  Shocks in the asymmetric exclusion process , 1988 .

[9]  H. Rost,et al.  Non-equilibrium behaviour of a many particle process: Density profile and local equilibria , 1981 .

[10]  A. Majda,et al.  The validity of nonlinear geometric optics for weak solutions of conservation laws , 1985 .

[11]  Bruce M. Boghosian,et al.  A Cellular Automaton for Burgers' Equation , 1987, Complex Syst..

[12]  J. Gärtner Convergence towards Burger's equation and propagation of chaos for weakly asymmetric exclusion processes , 1987 .

[13]  T. Liggett Interacting Particle Systems , 1985 .

[14]  Herbert Spohn,et al.  Microscopic models of hydrodynamic behavior , 1988 .

[15]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[16]  C. Kipnis Central Limit Theorems for Infinite Series of Queues and Applications to Simple Exclusion , 1986 .

[17]  M. Vares,et al.  Hydrodynamic equations for attractive particle systems on ℤ , 1987 .

[18]  C. Kipnis,et al.  DERIVATION OF THE HYDRODYNAMICAL EQUATION FOR THE ZERO-RANGE INTERACTION PROCESS , 1984 .