Atomic Scale Photodetection Enabled by a Memristive Junction.

The optical control of atomic relocations in a metallic quantum point contact is of great interest because it addresses the fundamental limit of "CMOS scaling". Here, by developing a platform for combined electronics and photonics on the atomic scale, we demonstrate an optically controlled electronic switch based on the relocation of atoms. It is shown through experiments and simulations how the interplay between electrical, optical, and light-induced thermal forces can reversibly relocate a few atoms and enable atomic photodetection with a digital electronic response, a high resistance extinction ratio (70 dB), and a low OFF-state current (10 pA) at room temperature. Additionally, the device introduced here displays an optically induced pinched hysteretic current (optical memristor). The photodetector has been tested in an experiment with real optical data at 0.5 Gbit/s, from which an eye diagram visualizing millions of detection cycles could be produced. This demonstrates the durability of the realized atomic scale devices and establishes them as alternatives to traditional photodetectors.

[1]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[2]  Masakazu Aono,et al.  Highly Reproducible and Regulated Conductance Quantization in a Polymer‐Based Atomic Switch , 2017 .

[3]  Wei D. Lu,et al.  Electrochemical dynamics of nanoscale metallic inclusions in dielectrics , 2014, Nature Communications.

[4]  A. Knoll,et al.  Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes , 2010, Science.

[5]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[6]  M. Luisier,et al.  Single Atom Plasmonic Switch , 2015, 1508.07748.

[7]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[8]  D. Eigler,et al.  Bistability in Atomic-Scale Antiferromagnets , 2012, Science.

[9]  K. Terabe,et al.  Volatile and nonvolatile selective switching of a photo-assisted initialized atomic switch , 2013, Nanotechnology.

[10]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[11]  Masakazu Aono,et al.  Photoassisted formation of an atomic switch. , 2010, Small.

[12]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[13]  C. Lutz,et al.  Reading and writing single-atom magnets , 2016, Nature.

[14]  Junghyun Park,et al.  Electrical tuning of a quantum plasmonic resonance. , 2017, Nature nanotechnology.

[15]  M. Brongersma,et al.  Probing the electrical switching of a memristive optical antenna by STEM EELS , 2015, Nature Communications.

[16]  Stephan Hofmann,et al.  Nanoscale Plasmon-Enhanced Spectroscopy in Memristive Switches. , 2016, Small.

[17]  Alejandro Strachan,et al.  Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. , 2015, Nature materials.

[18]  Wei D. Lu,et al.  Iodine Vacancy Redistribution in Organic–Inorganic Halide Perovskite Films and Resistive Switching Effects , 2017, Advanced materials.

[19]  Jie Sun,et al.  A one femtojoule athermal silicon modulator , 2013, 1312.2683.

[20]  Takuro Tamura,et al.  Rate-Limiting Processes Determining the Switching Time in a Ag2S Atomic Switch , 2010 .

[21]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[22]  R. Waser,et al.  Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. , 2012, Nature materials.

[23]  Shinhyun Choi,et al.  Comprehensive physical model of dynamic resistive switching in an oxide memristor. , 2014, ACS nano.

[24]  R. Waser,et al.  Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories , 2009 .

[25]  T. Schimmel,et al.  The Single-Atom Transistor: perspectives for quantum electronics on the atomic-scale , 2010 .

[26]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[27]  R. Waser,et al.  Quantum conductance and switching kinetics of AgI-based microcrossbar cells , 2012, Nanotechnology.

[28]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[29]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[30]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[31]  D. Strukov,et al.  Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors , 2012, Applied Physics A.

[32]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[33]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[34]  Joseph Shappir,et al.  Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. , 2011, Nano letters.

[35]  S. Menzel,et al.  Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems , 2007 .

[36]  D. Ang,et al.  Optical reset modulation in the SiO 2 /Cu conductive-bridge resistive memory stack , 2017 .