GanzstellensäTze in Theories of Valued Fields
暂无分享,去创建一个
[1] Thomas Becker,et al. Real Closed Rings and Ordered Valuation Ring , 1983, Math. Log. Q..
[2] T. Lam. Orderings, valuations, and quadratic forms , 1983 .
[3] Gregory L. Cherlin,et al. Real closed rings II. model theory , 1983, Ann. Pure Appl. Log..
[4] G. Cherlin. Model theoretic algebra: Selected topics , 1976 .
[5] Alexander Prestel,et al. Lectures On Formally Real Fields , 1976 .
[6] Thomas Scanlon,et al. A model complete theory of valued D-fields , 2000, Journal of Symbolic Logic.
[7] Deirdre Haskell,et al. Definable sets in algebraically closed valued fields: elimination of imaginaries , 2006 .
[8] J. Cassels. LECTURES ON FORMALLY REAL FIELDS (Lecture Notes in Mathematics, 1093) , 1985 .
[9] Franz-Viktor Kuhlmann,et al. Value groups, residue fields, and bad places of rational function fields , 2004, 1003.5685.
[10] E. Artin. Über die Zerlegung definiter Funktionen in Quadrate , 1927 .
[11] Manfred Knebusch. On valuation spectra , 1998 .
[12] M. A. Dickmann,et al. On polynomials over real closed rings , 1980 .
[13] L. Bélair. Fonctions rationnelles aux différences à valeurs entières dans les vecteurs de Witt , 2004 .
[14] D. Marker. Model theory : an introduction , 2002 .
[15] Paulo Ribenboim,et al. The theory of classical valuations , 1999 .
[16] A. Prestel,et al. Integral-valued rational functions on valued fields , 1991 .
[17] Peter Roquette,et al. Formally P-Adic Fields , 1984 .
[18] Tsit Yuen Lam,et al. An introduction to real algebra , 1984 .
[19] R. Cluckers,et al. Definable equivalence relations and zeta functions of groups (with an appendix by Raf Cluckers) , 2006, Journal of the European Mathematical Society.
[20] Ehud Hrushovski,et al. Zeta functions from definable equivalence relations , 2006 .