GanzstellensäTze in Theories of Valued Fields

The purpose of this paper is to study an analogue of Hilbert's seventeenth problem for functions over a valued field which are integral definite on some definable set; that is, that map the given set into the valuation ring. We use model theory to exhibit a uniform method, on various theories of valued fields, for deriving an algebraic characterization of such functions. As part of this method we refine the concept of a function being integral at a point, and make it dependent on the relevant class of valued fields. We apply our framework to algebraically closed valued fields, model complete theories of difference and differential valued fields, and real closed valued fields.

[1]  Thomas Becker,et al.  Real Closed Rings and Ordered Valuation Ring , 1983, Math. Log. Q..

[2]  T. Lam Orderings, valuations, and quadratic forms , 1983 .

[3]  Gregory L. Cherlin,et al.  Real closed rings II. model theory , 1983, Ann. Pure Appl. Log..

[4]  G. Cherlin Model theoretic algebra: Selected topics , 1976 .

[5]  Alexander Prestel,et al.  Lectures On Formally Real Fields , 1976 .

[6]  Thomas Scanlon,et al.  A model complete theory of valued D-fields , 2000, Journal of Symbolic Logic.

[7]  Deirdre Haskell,et al.  Definable sets in algebraically closed valued fields: elimination of imaginaries , 2006 .

[8]  J. Cassels LECTURES ON FORMALLY REAL FIELDS (Lecture Notes in Mathematics, 1093) , 1985 .

[9]  Franz-Viktor Kuhlmann,et al.  Value groups, residue fields, and bad places of rational function fields , 2004, 1003.5685.

[10]  E. Artin Über die Zerlegung definiter Funktionen in Quadrate , 1927 .

[11]  Manfred Knebusch On valuation spectra , 1998 .

[12]  M. A. Dickmann,et al.  On polynomials over real closed rings , 1980 .

[13]  L. Bélair Fonctions rationnelles aux différences à valeurs entières dans les vecteurs de Witt , 2004 .

[14]  D. Marker Model theory : an introduction , 2002 .

[15]  Paulo Ribenboim,et al.  The theory of classical valuations , 1999 .

[16]  A. Prestel,et al.  Integral-valued rational functions on valued fields , 1991 .

[17]  Peter Roquette,et al.  Formally P-Adic Fields , 1984 .

[18]  Tsit Yuen Lam,et al.  An introduction to real algebra , 1984 .

[19]  R. Cluckers,et al.  Definable equivalence relations and zeta functions of groups (with an appendix by Raf Cluckers) , 2006, Journal of the European Mathematical Society.

[20]  Ehud Hrushovski,et al.  Zeta functions from definable equivalence relations , 2006 .