Tunable and reconfigurable THz devices for advanced imaging and adaptive wireless communication

In this paper, we report on two different approaches that have been explored to realize tunable and reconfigurable THz devices for advanced imaging and adaptive wireless communication. The first approach makes use of electronically tunable varactor diodes. Frequency tunable THz antennas based on this approach have been successfully demonstrated for the first time in G-band, enabling the development of spectroscopic THz detectors and focal-plane imaging arrays. The second approach takes advantages of optical THz spatial modulation based on photo-induced free carriers in semiconductors. Using this approach, high-performance tunable THz modulators/attenuators, reconfigurable masks for THz coded aperture imaging, and photo-induced Fresnel-zone-plate antennas for dynamic THz beam steering and forming have been successfully demonstrated. Our recent study also shows that by employing the so-called mesa array technique, sub-wavelength spatial resolution and higher than 100 dB modulation depth can be achieved, making it possible to develop tunable THz devices (e.g., tunable filters) with performance and versatility far beyond those realized by conventional approaches. On the basis of the above investigation, the prospects of high-speed near-field THz imaging, real-time ultra-sensitive heterodyne imaging and prototype adaptive THz wireless communication links will be discussed.

[1]  Huili Grace Xing,et al.  Characterization of terahertz antennas using photoinduced coded‐aperture imaging , 2015 .

[2]  Zhaocheng Wang,et al.  Terahertz Terabit Wireless Communication , 2011, IEEE Microwave Magazine.

[3]  Kaushik Sengupta,et al.  A 0.28 THz Power-Generation and Beam-Steering Array in CMOS Based on Distributed Active Radiators , 2012, IEEE Journal of Solid-State Circuits.

[4]  Huili Grace Xing,et al.  Approaching real-time terahertz imaging with photo-induced coded apertures and compressed sensing , 2014 .

[5]  David B. Rutledge,et al.  Imaging Antenna Arrays , 1981, 1981 International Conference on Submillimeter Waves and Their Applications.

[6]  Willie J Padilla,et al.  THz Wave Modulators: A Brief Review on Different Modulation Techniques , 2013 .

[7]  K. Sarabandi,et al.  A varactor-tuned dual-band slot antenna , 2006, IEEE Transactions on Antennas and Propagation.

[8]  Huili Grace Xing,et al.  Terahertz imaging employing graphene modulator arrays. , 2013, Optics express.

[9]  Lei Liu,et al.  Advanced Terahertz Sensing and Imaging Systems Based on Integrated III-V Interband Tunneling Devices , 2017, Proceedings of the IEEE.

[10]  Lei Liu,et al.  Optical Modulation of Continuous Terahertz Waves towards Cost-effective Reconfigurable Quasi-optical Terahertz Components References and Links , 2022 .

[11]  Lei Liu,et al.  Integrated 585-GHz Hot-Electron Mixer Focal-Plane Arrays Based on Annular Slot Antennas for Imaging Applications , 2010, IEEE Transactions on Microwave Theory and Techniques.

[12]  Duncan A. Robertson,et al.  The Photo-Injected Fresnel Zone Plate Antenna: Optoelectronic Beam Steering at mm-Wave Frequencies , 2013, IEEE Transactions on Antennas and Propagation.

[13]  Wai Lam Chan,et al.  Imaging with terahertz radiation , 2007 .

[14]  P. Taday,et al.  Detection and identification of explosives using terahertz pulsed spectroscopic imaging , 2005 .

[15]  Lei Liu,et al.  Photo-induced spatial modulation of THz waves: opportunities and limitations. , 2015, Optics express.

[16]  Jing Liang,et al.  Varactor Loaded Tunable Printed PIFA , 2009 .

[17]  Patrick Fay,et al.  A WR-4 Optically-Tunable Waveguide Attenuator with 50 dB Tuning Range and Low Insertion Loss , 2016 .

[18]  Lei Liu,et al.  Design and characterisation of a 200 GHz tunable lens-coupled annular-slot antenna with a 50 GHz tuning range , 2014 .

[19]  A. Kannegulla,et al.  Coded-Aperture Imaging Using Photo-Induced Reconfigurable Aperture Arrays for Mapping Terahertz Beams , 2014, IEEE Transactions on Terahertz Science and Technology.

[20]  Kubilay Sertel,et al.  Imaging performance of a THz focal plane array , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[21]  H. Xing,et al.  Terahertz focal plane arrays employing heterostructure backward diodes integrated with folded dipole antennas , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[22]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[23]  G. Bastiaans,et al.  Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz. , 2007, Optics express.

[24]  P. Fay,et al.  A 200 GHz lens-coupled annular-slot antenna with 50 GHz tuning range for reconfigurable terahertz detectors , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[25]  Raymond Blundell,et al.  An annular slot antenna on a dielectric half-space , 1994 .

[26]  Lei Liu,et al.  Tunable 200 GHz lens-coupled annular-slot antennas using Schottky varactor diodes for all-electronic reconfigurable terahertz circuits , 2013 .

[27]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[28]  Wai Lam Chan,et al.  A single-pixel terahertz imaging system based on compressed sensing , 2008 .

[29]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[30]  Yukio Kawano,et al.  Wide-band frequency-tunable terahertz and infrared detection with graphene , 2013, Nanotechnology.

[31]  G.M. Rebeiz,et al.  A dual-polarized slot-ring antenna with independent tuning , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[32]  Qing Hu,et al.  Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. , 2005, Optics letters.

[33]  P. Siegel Terahertz technology in biology and medicine , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[34]  Gabriel M. Rebeiz,et al.  Double-slot antennas on extended hemispherical dielectric lenses , 1992 .

[35]  P. Fay,et al.  Integration and fabrication of high-performance Sb-based heterostructure backward diodes with submicron-scale airbridges for terahertz detection , 2016 .

[36]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[37]  Lei Liu,et al.  A terahertz reconfigurable photo-induced fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[38]  Ze Zhang,et al.  Sub-Micron Area Heterojunction Backward Diode Millimeter-Wave Detectors With 0.18 ${\rm pW/Hz}^{1/2}$ Noise Equivalent Power , 2011, IEEE Microwave and Wireless Components Letters.

[39]  R. M. Weikle,et al.  Schottky diode arrays for submillimeter-wave sideband generation , 2012, 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves.

[40]  Huili Grace Xing,et al.  Approaching real-time terahertz imaging using photo-induced reconfigurable aperture arrays , 2014, Sensing Technologies + Applications.

[41]  James C. Wiltse,et al.  The Fresnel zone plate antenna , 1991 .

[42]  A. Ittipiboon,et al.  Reconfigurable Fresnel-Zone-Plate-Shutter Antenna with Beam-Steering Capability , 2007, IEEE Antennas and Propagation Magazine.