Porous silicene as a hydrogen purification membrane.

We investigated theoretically the hydrogen permeability and selectivity of a porous silicene membrane via first-principles calculations. The subnanometer pores of the silicene membrane are designed as divacancy defects with octagonal and pentagonal rings (585-divacancy). The porous silicene exhibits high selectivity comparable with graphene-based membranes for hydrogen over various gas molecules (N2, CO, CO2, CH4, and H2O). The divacancy defects in silicene are chemically inert to the considered gas molecules. Our results suggest that the porous silicene membrane is expected to find great potential in gas separation and filtering applications.

[1]  E. Wang,et al.  Water desalination: Graphene cleans up water. , 2012, Nature nanotechnology.

[2]  Jinlong Yang,et al.  Graphdiyne as Hydrogen Purification Membrane , 2012 .

[3]  Chang-wen Zhang,et al.  The electronic and magnetic properties of functionalized silicene: a first-principles study , 2012, Nanoscale Research Letters.

[4]  Hongyu Zhang,et al.  Tunable Hydrogen Separation in sp–sp2 Hybridized Carbon Membranes: A First-Principles Prediction , 2012 .

[5]  Markus J Buehler,et al.  Selective hydrogen purification through graphdiyne under ambient temperature and pressure. , 2012, Nanoscale.

[6]  Abdelkader Kara,et al.  Silicene structures on silver surfaces , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Ying Dai,et al.  Graphene-diamond interface: Gap opening and electronic spin injection , 2012 .

[8]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[9]  Jiaxin Zheng,et al.  Giant magnetoresistance in silicene nanoribbons. , 2012, Nanoscale.

[10]  Jinlong Yang,et al.  Diamondization of chemically functionalized graphene and graphene-BN bilayers. , 2012, Physical chemistry chemical physics : PCCP.

[11]  R. E. Mapasha,et al.  Ab initio studies of hydrogen adatoms on bilayer graphene , 2012 .

[12]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[13]  B. Aufray,et al.  Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  M. Mazzoni,et al.  Knots in a graphene nanoribbon , 2012 .

[15]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[16]  Shishen Yan,et al.  First-Principles Study of Ferromagnetism in Two-Dimensional Silicene with Hydrogenation , 2012 .

[17]  Xin-Quan Wang,et al.  Induced ferromagnetism in one-side semihydrogenated silicene and germanene. , 2012, Physical chemistry chemical physics : PCCP.

[18]  Jinlong Yang,et al.  Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. , 2011, Nanoscale.

[19]  A. Seitsonen,et al.  A review on silicene - New candidate for electronics , 2012 .

[20]  Jing Zhang,et al.  Separation of Hydrogen and Nitrogen Gases with Porous Graphene Membrane , 2011 .

[21]  Victor Rudolph,et al.  Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. , 2011, Chemical communications.

[22]  Jinlong Yang,et al.  Are Azafullerene Encapsulated Single-Walled Carbon Nanotubes n-Type Semiconductors? , 2011 .

[23]  Cheng-Cheng Liu,et al.  Quantum spin Hall effect in silicene and two-dimensional germanium. , 2011, Physical review letters.

[24]  Yan Zhang,et al.  First-principles study of the structural and electronic properties of armchair silicene nanoribbons with vacancies , 2011 .

[25]  Hanna Enriquez,et al.  Epitaxial growth of a silicene sheet , 2010, 1204.0523.

[26]  Klaus Müllen,et al.  Porous graphene as an atmospheric nanofilter. , 2010, Small.

[27]  Jürgen Hafner,et al.  Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. , 2010, The journal of physical chemistry. A.

[28]  K. Jacobsen,et al.  First-principles calculations of graphene nanoribbons in gaseous environments: Structural and electronic properties , 2010, 1009.1242.

[29]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[30]  Zhen Zhou,et al.  Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. , 2010, Chemical communications.

[31]  Abdelkader Kara,et al.  Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene , 2010 .

[32]  Narayana R Aluru,et al.  Water Transport through Ultrathin Graphene , 2010 .

[33]  S. Dai,et al.  Porous graphene as the ultimate membrane for gas separation. , 2009, Nano letters.

[34]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[35]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[36]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[37]  Y. S. Lin,et al.  Microporous inorganic membranes for high temperature hydrogen purification , 2008 .

[38]  Boyang Wang,et al.  Selective ion passage through functionalized graphene nanopores. , 2008, Journal of the American Chemical Society.

[39]  F. M. Peeters,et al.  Graphene: A perfect nanoballoon , 2008, 0810.4056.

[40]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[41]  S. Grimme,et al.  Structures and interaction energies of stacked graphene-nucleobase complexes. , 2008, Physical chemistry chemical physics : PCCP.

[42]  Cheol-Hwan Park,et al.  Energy gaps and stark effect in boron nitride nanoribbons. , 2008, Nano letters.

[43]  Bing-Lin Gu,et al.  Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor , 2008, 0803.1516.

[44]  T. Nenoff,et al.  Membranes for hydrogen separation. , 2007, Chemical reviews.

[45]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[46]  A. Fazzio,et al.  Divacancies in graphene and carbon nanotubes. , 2007, Nano letters.

[47]  Stefan Grimme,et al.  Noncovalent Interactions between Graphene Sheets and in Multishell (Hyper)Fullerenes , 2007 .

[48]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[49]  B. Sumpter,et al.  Unique chemical reactivity of a graphene nanoribbon's zigzag edge. , 2007, The Journal of chemical physics.

[50]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[51]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[52]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[53]  A. V. Fedorov,et al.  First direct observation of Dirac fermions in graphite , 2006, cond-mat/0608069.

[54]  R. Donelson,et al.  Developments and design of novel (non-palladium-based) metal membranes for hydrogen separation , 2006 .

[55]  Sushil Adhikari,et al.  Hydrogen Membrane Separation Techniques , 2006 .

[56]  Michael Freemantle,et al.  MEMBRANES FOR GAS SEPARATION , 2005 .

[57]  R. Saraf,et al.  Theory of hydrogen permeability in nonporous silica membranes , 2004 .

[58]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[59]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[60]  W. Auwärter,et al.  Boron Nitride Nanomesh , 2004, Science.

[61]  T. Hertel,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2003, cond-mat/0308451.

[62]  Xie Hong-kun,et al.  Nature of Science , 2002 .

[63]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[64]  H. C. Foley,et al.  Ultrasonic deposition of high-selectivity nanoporous carbon membranes , 1999, Science.

[65]  H. Verweij,et al.  High-selectivity, high-flux silica membranes for gas separation , 1998, Science.

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  Nagashima,et al.  Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. , 1995, Physical review letters.

[68]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[69]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[70]  Lothar Meyer,et al.  Lattice Constants of Graphite at Low Temperatures , 1955 .