Complexity of OM factorizations of polynomials over local fields

Let $k$ be a locally compact complete field with respect to a discrete valuation $v$. Let $\oo$ be the valuation ring, $\m$ the maximal ideal and $F(x)\in\oo[x]$ a monic separable polynomial of degree $n$. Let $\delta=v(\dsc(F))$. The Montes algorithm computes an OM factorization of $F$. The single-factor lifting algorithm derives from this data a factorization of $F \md{\m^\nu}$, for a prescribed precision $\nu$. In this paper we find a new estimate for the complexity of the Montes algorithm, leading to an estimation of $O(n^{2+\epsilon}+n^{1+\epsilon}\delta^{2+\epsilon}+n^2\nu^{1+\epsilon})$ word operations for the complexity of the computation of a factorization of $F \md{\m^\nu}$, assuming that the residue field of $k$ is small.

[1]  Öystein Ore,et al.  Newtonsche Polygone in der Theorie der algebraischen Körper , 1928 .

[2]  E. Nart Okutsu-Montes representations of prime ideals of one-dimensional integral closures , 2011 .

[3]  Sebastian Pauli,et al.  A fast algorithm for polynomial factorization over $\mathbb {Q}_p$ , 2002 .

[4]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[5]  Sebastian,et al.  A fast algorithm for polynomial factorization over Q p , 2001 .

[6]  Sebastian Pauli,et al.  Factoring Polynomials Over Local Fields , 2001, J. Symb. Comput..

[7]  J. Wellstein Zur Theorie der algebraischen Körper , 1901 .

[8]  E. Nart,et al.  Okutsu invariants and Newton polygons , 2009, 0911.0286.

[9]  E. Nart,et al.  Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields , 2008, 0807.4065.

[10]  S. Maclane A construction for absolute values in polynomial rings , 1936 .

[11]  Kōsaku Okutsu Construction of integral basis, III , 1982 .

[12]  David Ford,et al.  On the Complexity of the Montes Ideal Factorization Algorithm , 2010, ANTS.

[13]  Enric Nart,et al.  Single-factor lifting and factorization of polynomials over local fields , 2011, J. Symb. Comput..

[14]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[15]  Enric Nart,et al.  Newton polygons of higher order in algebraic number theory , 2008, 0807.2620.

[16]  Sebastian Pauli,et al.  Factoring Polynomials over Local Fields II , 2010, ANTS.

[17]  E. Nart,et al.  Higher Newton polygons and integral bases , 2009, 0902.3428.

[18]  S. Lane A construction for prime ideals as absolute values of an algebraic field , 1936 .

[19]  Enric Nart,et al.  A New Computational Approach to Ideal Theory in Number Fields , 2010, Foundations of Computational Mathematics.