Metaplasticity at Single Glutamatergic Synapses

Optimal function of neuronal networks requires interplay between rapid forms of Hebbian plasticity and homeostatic mechanisms that adjust the threshold for plasticity, termed metaplasticity. Numerous forms of rapid synapse plasticity have been examined in detail. However, the rules that govern synaptic metaplasticity are much less clear. Here, we demonstrate a local subunit-specific switch in NMDA receptors that alternately primes or prevents potentiation at single synapses. Prolonged suppression of neurotransmitter release enhances NMDA receptor currents, increases the number of functional NMDA receptors containing NR2B, and augments calcium transients at single dendritic spines. This local switch in NMDA receptors requires spontaneous glutamate release but is independent of action potentials. Moreover, single inactivated synapses exhibit a lower induction threshold for both long-term synaptic potentiation and plasticity-induced spine growth. Thus, spontaneous glutamate release adjusts plasticity threshold at single synapses by local regulation of NMDA receptors, providing a novel spatially delimited form of synaptic metaplasticity.

[1]  John R Huguenard,et al.  Pathway-Specific Differences in Subunit Composition of Synaptic NMDA Receptors on Pyramidal Neurons in Neocortex , 2003, The Journal of Neuroscience.

[2]  M. V. Rossum,et al.  Activity Coregulates Quantal AMPA and NMDA Currents at Neocortical Synapses , 2000, Neuron.

[3]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[4]  Masahiko Watanabe,et al.  Target-Cell-Specific Left-Right Asymmetry of NMDA Receptor Content in Schaffer Collateral Synapses in ϵ1/NR2A Knock-Out Mice , 2004, The Journal of Neuroscience.

[5]  S. Cull-Candy,et al.  Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses , 2005, Nature Neuroscience.

[6]  M. Colonnese,et al.  Chronic NMDA receptor blockade from birth delays the maturation of NMDA currents, but does not affect AMPA/kainate currents. , 2003, Journal of neurophysiology.

[7]  A. Craig,et al.  Synapse-Specific Regulation of AMPA Receptor Subunit Composition by Activity , 2005, The Journal of Neuroscience.

[8]  Roberto Malinow,et al.  Subunit-Specific NMDA Receptor Trafficking to Synapses , 2002, Neuron.

[9]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[10]  E. G. Jones,et al.  Switching of NMDA Receptor 2A and 2B Subunits at Thalamic and Cortical Synapses during Early Postnatal Development , 2004, The Journal of Neuroscience.

[11]  A. Lüthi,et al.  Insufficient Sleep Reversibly Alters Bidirectional Synaptic Plasticity and NMDA Receptor Function , 2006, The Journal of Neuroscience.

[12]  Jinhyung Kim,et al.  Rapid, Bidirectional Remodeling of Synaptic NMDA Receptor Subunit Composition by A-type K+ Channel Activity in Hippocampal CA1 Pyramidal Neurons , 2008, Neuron.

[13]  Y. Jan,et al.  Changing subunit composition of heteromeric NMDA receptors during development of rat cortex , 1994, Nature.

[14]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[15]  Ann Marie Craig,et al.  Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons , 2005, The Journal of comparative neurology.

[16]  K. Sakimura,et al.  Synapse‐selective impairment of NMDA receptor functions in mice lacking NMDA receptor epsilon 1 or epsilon 2 subunit. , 1997, The Journal of physiology.

[17]  G. Collingridge,et al.  Differential Roles of NR2A and NR2B-Containing NMDA Receptors in Cortical Long-Term Potentiation and Long-Term Depression , 2004, The Journal of Neuroscience.

[18]  R. Huganir,et al.  Inactivation of NMDA Receptors by Direct Interaction of Calmodulin with the NR1 Subunit , 1996, Cell.

[19]  K. Svoboda,et al.  Two-photon imaging in living brain slices. , 1999, Methods.

[20]  K. Moulder,et al.  Spontaneous and Evoked Glutamate Release Activates Two Populations of NMDA Receptors with Limited Overlap , 2008, The Journal of Neuroscience.

[21]  E. Shimizu,et al.  Genetic enhancement of learning and memory in mice , 1999, Nature.

[22]  K. Gottmann,et al.  Synaptic Activity‐Dependent Developmental Regulation of NMDA Receptor Subunit Expression in Cultured Neocortical Neurons , 2000, Journal of neurochemistry.

[23]  J E Lisman,et al.  Three Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no man's land , 2001, The Journal of physiology.

[24]  Nicholas R Wall,et al.  Regulation of Dendritic Protein Synthesis by Miniature Synaptic Events , 2004, Science.

[25]  Rebekah J. Corlew,et al.  Visual Deprivation Modifies Both Presynaptic Glutamate Release and the Composition of Perisynaptic/Extrasynaptic NMDA Receptors in Adult Visual Cortex , 2005, The Journal of Neuroscience.

[26]  R. Greene,et al.  Schaffer collateral and perforant path inputs activate different subtypes of NMDA receptors on the same CA1 pyramidal cell , 2004, British journal of pharmacology.

[27]  M. Bear,et al.  Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Rafael Yuste,et al.  Protein kinase A regulates calcium permeability of NMDA receptors , 2006, Nature Neuroscience.

[29]  M. Bear,et al.  Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression , 2007, Neuropharmacology.

[30]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[31]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[32]  Roberto Malinow,et al.  Synaptic AMPA Receptor Plasticity and Behavior , 2009, Neuron.

[33]  D. Choquet,et al.  NMDA receptor surface mobility depends on NR2A-2B subunits , 2006, Proceedings of the National Academy of Sciences.

[34]  M. Sheng,et al.  Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity , 2004, Science.

[35]  Alcino J. Silva,et al.  Interactions between the NR2B Receptor and CaMKII Modulate Synaptic Plasticity and Spatial Learning , 2007, The Journal of Neuroscience.

[36]  Larissa A. Jarzylo,et al.  Homeostatic regulation of AMPA receptor expression at single hippocampal synapses , 2008, Proceedings of the National Academy of Sciences.

[37]  Michael W. Salter,et al.  Src kinases: a hub for NMDA receptor regulation , 2004, Nature Reviews Neuroscience.

[38]  R. Malinow,et al.  NMDA Receptor Subunit Composition Controls Synaptic Plasticity by Regulating Binding to CaMKII , 2005, Neuron.

[39]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[40]  E. Kavalali,et al.  MeCP2-Dependent Transcriptional Repression Regulates Excitatory Neurotransmission , 2006, Current Biology.

[41]  L. Abbott,et al.  Limits on the memory storage capacity of bounded synapses , 2007, Nature Neuroscience.

[42]  R. Malinow,et al.  Postsynaptic conversion of silent synapses during LTP affects synaptic gain and transmission dynamics , 2001, Nature Neuroscience.

[43]  G. Carmignoto,et al.  Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. , 1992, Science.

[44]  Karel Svoboda,et al.  The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine , 2008, Science.

[45]  P. Calabresi,et al.  Decreased NR2B Subunit Synaptic Levels Cause Impaired Long-Term Potentiation But Not Long-Term Depression , 2009, The Journal of Neuroscience.

[46]  Ryosuke Kawakami,et al.  Asymmetrical allocation of NMDA receptor epsilon2 subunits in hippocampal circuitry. , 2003, Science.

[47]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[48]  J. Montgomery,et al.  State-Dependent Heterogeneity in Synaptic Depression between Pyramidal Cell Pairs , 2002, Neuron.

[49]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[50]  Stephen F Traynelis,et al.  Subunit‐specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles , 2005, The Journal of physiology.

[51]  Benjamin D. Philpot,et al.  Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity , 2008, Neuropharmacology.

[52]  M. Ehlers,et al.  Activity-Dependent mRNA Splicing Controls ER Export and Synaptic Delivery of NMDA Receptors , 2003, Neuron.

[53]  B. Gähwiler,et al.  Ca2+ or Sr2+ Partially Rescues Synaptic Transmission in Hippocampal Cultures Treated with Botulinum Toxin A and C, But Not Tetanus Toxin , 1997, The Journal of Neuroscience.

[54]  L. Abbott,et al.  Cascade Models of Synaptically Stored Memories , 2005, Neuron.

[55]  J. Burrone,et al.  A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse , 2009, Nature Neuroscience.

[56]  Shaul Hestrin,et al.  Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse , 1992, Nature.

[57]  Michael Häusser,et al.  A proportional but slower NMDA potentiation follows AMPA potentiation in LTP , 2004, Nature Neuroscience.

[58]  E. Kavalali,et al.  Activity-Dependent Suppression of Miniature Neurotransmission through the Regulation of DNA Methylation , 2008, The Journal of Neuroscience.

[59]  A. C. Greenwood,et al.  Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. , 2001, Journal of neurophysiology.

[60]  M. Sheng,et al.  Distinct Roles of NR2A and NR2B Cytoplasmic Tails in Long-Term Potentiation , 2010, The Journal of Neuroscience.

[61]  R. Huganir,et al.  Synapse-specific regulation of AMPA receptor function by PSD-95 , 2006, Proceedings of the National Academy of Sciences.

[62]  W. Abraham Metaplasticity: tuning synapses and networks for plasticity , 2008, Nature Reviews Neuroscience.

[63]  Mark F. Bear,et al.  Obligatory Role of NR2A for Metaplasticity in Visual Cortex , 2007, Neuron.

[64]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[65]  M. Sheng,et al.  Differential Roles of NR2A- and NR2B-Containing NMDA Receptors in Ras-ERK Signaling and AMPA Receptor Trafficking , 2005, Neuron.

[66]  Z. Fu,et al.  Relationship between Availability of NMDA Receptor Subunits and Their Expression at the Synapse , 2002, The Journal of Neuroscience.

[67]  Ryosuke Kawakami,et al.  Asymmetrical Allocation of NMDA Receptor ε2 Subunits in Hippocampal Circuitry , 2003, Science.

[68]  Ann Marie Craig,et al.  Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons , 1997, Neuron.

[69]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.

[70]  C. Lüscher,et al.  Rapid Synthesis and Synaptic Insertion of GluR2 for mGluR-LTD in the Ventral Tegmental Area , 2007, Science.

[71]  G. Mower,et al.  Developmental changes in the expression of NMDA receptor subunits (NR1, NR2A, NR2B) in the cat visual cortex and the effects of dark rearing. , 2000, Brain research. Molecular brain research.

[72]  S. Cull-Candy,et al.  Role of Distinct NMDA Receptor Subtypes at Central Synapses , 2004, Science's STKE.

[73]  Roger A. Nicoll,et al.  Rapid Bidirectional Switching of Synaptic NMDA Receptors , 2007, Neuron.

[74]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[75]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[76]  R. Huganir,et al.  The cell biology of synaptic plasticity: AMPA receptor trafficking. , 2007, Annual review of cell and developmental biology.

[77]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[78]  D. Purpura,et al.  NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders , 2007, Nature Reviews Neuroscience.

[79]  M. Ehlers,et al.  Diffusional Trapping of GluR1 AMPA Receptors by Input-Specific Synaptic Activity , 2007, Neuron.

[80]  Xinran Liu,et al.  An Isolated Pool of Vesicles Recycles at Rest and Drives Spontaneous Neurotransmission , 2005, Neuron.

[81]  K. Sakimura,et al.  Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses , 2000, Neuropharmacology.