A new scalarization and numerical method for constructing the weak Pareto front of multi-objective optimization problems
暂无分享,去创建一个
[1] C. Yalçin Kaya,et al. Optimization Over the Efficient Set of Multi-objective Convex Optimal Control Problems , 2010, J. Optim. Theory Appl..
[2] Włodzimierz Ogryczak. Comments on properties of the minmax solutions in goal programming , 2001, Eur. J. Oper. Res..
[3] Regina S. Burachik,et al. An update rule and a convergence result for a penalty function method , 2007 .
[4] Matthias Ehrgott,et al. Multicriteria Optimization , 2005 .
[5] Gabriele Eichfelder,et al. Scalarizations for adaptively solving multi-objective optimization problems , 2009, Comput. Optim. Appl..
[6] Boglárka G.-Tóth,et al. Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods , 2009, Comput. Optim. Appl..
[7] Margaret M. Wiecek,et al. Generating epsilon-efficient solutions in multiobjective programming , 2007, Eur. J. Oper. Res..
[8] T. Q. Phong,et al. Scalarizing Functions for Generating the Weakly Efficient Solution Set in Convex Multiobjective Problems , 2005, SIAM J. Optim..
[9] P. Fantini,et al. A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization , 2005 .
[10] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[11] Sheldon H. Jacobson,et al. Finding preferred subsets of Pareto optimal solutions , 2008, Comput. Optim. Appl..
[12] R. Burachik,et al. Using a General Augmented Lagrangian Duality with Implications on Penalty Methods , 2010 .
[13] C. Yalçin Kaya,et al. On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian* , 2006, J. Glob. Optim..
[14] DebK.,et al. A fast and elitist multiobjective genetic algorithm , 2002 .
[15] Jörg Fliege,et al. Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..
[16] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[17] Jeffrey C. Lagarias,et al. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..
[18] Günter Rudolph,et al. Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions , 2006, PPSN.
[19] Enrico Miglierina,et al. Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization , 2008, Eur. J. Oper. Res..
[20] Charles Audet,et al. Multiobjective Optimization Through a Series of Single-Objective Formulations , 2008, SIAM J. Optim..
[21] Musa A. Mammadov,et al. An inexact modified subgradient algorithm for nonconvex optimization , 2010, Comput. Optim. Appl..
[22] Frank Kursawe,et al. A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.
[23] Dinh The Luc,et al. Generating the weakly efficient set of nonconvex multiobjective problems , 2008, J. Glob. Optim..
[24] Gabriele Eichfelder,et al. Adaptive Scalarization Methods in Multiobjective Optimization , 2008, Vector Optimization.
[25] Gabriele Eichfelder,et al. An Adaptive Scalarization Method in Multiobjective Optimization , 2008, SIAM J. Optim..
[26] John E. Dennis,et al. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..
[27] S Ruzikal,et al. SUCCESSIVE APPROACH TO COMPUTE THE BOUNDED PARETO FRONT OF PRACTICAL MULTIOBJECTIVE OPTIMIZATION PROBLEMS , 2009 .
[28] Masahiro Tanaka,et al. GA-based decision support system for multicriteria optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.