Supervised Descriptor Learning for Non-Rigid Shape Matching

We present a novel method for computing correspondences between pairs of non-rigid shapes. Unlike the majority of existing techniques that assume a deformation model, such as intrinsic isometries, a priori and use a pre-defined set of point or part descriptors, we consider the problem of learning a correspondence model given a collection of reference pairs with known mappings between them. Our formulation is purely intrinsic and does not rely on a consistent parametrization or spatial positions of vertices on the shapes. Instead, we consider the problem of finding the optimal set of descriptors that can be jointly used to reproduce the given reference maps. We show how this problem can be formalized and solved for efficiently by using the recently proposed functional maps framework. Moreover, we demonstrate how to extract the functional subspaces that can be mapped reliably across shapes. This gives us a way to not only obtain better functional correspondences, but also to associate a confidence value to the different parts of the mappings. We demonstrate the efficiency and usefulness of the proposedapproach on a variety of challenging shape matching tasks.

[1]  Manolis I. A. Lourakis,et al.  Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications , 2000, ECCV.

[2]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[3]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Ghassan Hamarneh,et al.  Prior Knowledge for Part Correspondence , 2011, Comput. Graph. Forum.

[5]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[6]  Thomas A. Funkhouser,et al.  Schelling points on 3D surface meshes , 2012, ACM Trans. Graph..

[7]  Yücel Yemez,et al.  Eurographics Symposium on Geometry Processing 2011 Coarse-to-fine Combinatorial Matching for Dense Isometric Shape Correspondence , 2022 .

[8]  Mirela Ben-Chen,et al.  Cross‐Collection Map Inference by Intrinsic Alignment of Shape Spaces , 2014, Comput. Graph. Forum.

[9]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[10]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[11]  Christopher M. Bishop,et al.  Non-linear Bayesian Image Modelling , 2000, ECCV.

[12]  Leonidas J. Guibas,et al.  Shape Matching via Quotient Spaces , 2013 .

[13]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH 2005.

[14]  H. Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[16]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, SIGGRAPH 2011.

[17]  Maks Ovsjanikov,et al.  An Operator Approach to Tangent Vector Field Processing , 2013, SGP '13.

[18]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[19]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[20]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, SIGGRAPH 2010.

[21]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[22]  Hans-Peter Seidel,et al.  A Statistical Model of Human Pose and Body Shape , 2009, Comput. Graph. Forum.

[23]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[24]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[25]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[26]  Xuelong Li,et al.  A Review of Active Appearance Models , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[27]  Leonidas J. Guibas,et al.  Map-based exploration of intrinsic shape differences and variability , 2013, ACM Trans. Graph..

[28]  Timothy F. Cootes,et al.  Training Models of Shape from Sets of Examples , 1992, BMVC.

[29]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[30]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[31]  Leonidas J. Guibas,et al.  Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..

[32]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[33]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[34]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Fred L. Bookstein,et al.  Landmark methods for forms without landmarks: morphometrics of group differences in outline shape , 1997, Medical Image Anal..

[36]  Jovan Popović,et al.  Mesh-based inverse kinematics , 2005, SIGGRAPH 2005.