Statistical intelligence: effective analysis of high-density microarray data.

[1]  Sorin Drghici Methods for selecting differentially regulated genes , 2003 .

[2]  M K Kerr,et al.  Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A D Long,et al.  Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework , 2001, The Journal of Biological Chemistry.

[4]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[5]  G. Churchill,et al.  Experimental design for gene expression microarrays. , 2001, Biostatistics.

[6]  S. Drăghici,et al.  Experimental design, analysis of variance and slide quality assessment in gene expression arrays. , 2001, Current opinion in drug discovery & development.

[7]  P G Schultz,et al.  The effects of aging on gene expression in the hypothalamus and cortex of mice. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  G. Churchill,et al.  Statistical design and the analysis of gene expression microarray data. , 2001, Genetical research.

[9]  E. Brown,et al.  Genomic analysis of gene expression in C. elegans. , 2000, Science.

[10]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  G. A. Whitmore,et al.  Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Brazma,et al.  Gene expression data analysis , 2000, FEBS letters.

[13]  C. Ouzounis,et al.  Recent developments and future directions in computational genomics , 2000, FEBS letters.

[14]  Ash A. Alizadeh,et al.  'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.

[15]  Gregory R. Grant,et al.  Generation of patterns from gene expression data by assigning confidence to differentially expressed genes , 2000, Bioinform..

[16]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[17]  E. Jaffe,et al.  Detection of differentially expressed genes in lymphomas using cDNA arrays: identification of clusterin as a new diagnostic marker for anaplastic large-cell lymphomas. , 2000, Blood.

[18]  E. Wolski,et al.  Normalization strategies for cDNA microarrays. , 2000, Nucleic acids research.

[19]  Hilko van der Voet,et al.  Identification of the SAAT Gene Involved in Strawberry Flavor Biogenesis by Use of DNA Microarrays , 2000, Plant Cell.

[20]  Mark Schena,et al.  Microarray Biochip Technology , 2000 .

[21]  J. Collado-Vides,et al.  Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. , 2000, Nucleic acids research.

[22]  G. Church,et al.  Systematic management and analysis of yeast gene expression data. , 2000, Genome research.

[23]  P. Brown,et al.  Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Hughes,et al.  Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. , 2000, Science.

[25]  Ronald W. Davis,et al.  Genome-Wide Transcriptional Analysis of Aerobic and Anaerobic Chemostat Cultures of Saccharomyces cerevisiae , 1999, Journal of bacteriology.

[26]  Scott A. Rifkin,et al.  Microarray analysis of Drosophila development during metamorphosis. , 1999, Science.

[27]  M. Q. Zhang,et al.  Cluster, function and promoter: analysis of yeast expression array. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[28]  Joshua M. Stuart,et al.  MICROARRAY EXPERIMENTS : APPLICATION TO SPORULATION TIME SERIES , 1999 .

[29]  A. Dehejia,et al.  The genexpress IMAGE knowledge base of the human muscle transcriptome: a resource of structural, functional, and positional candidate genes for muscle physiology and pathologies. , 1999, Genome research.

[30]  Laurie J. Heyer,et al.  Exploring expression data: identification and analysis of coexpressed genes. , 1999, Genome research.

[31]  F. Blattner,et al.  Functional Genomics: Expression Analysis ofEscherichia coli Growing on Minimal and Rich Media , 1999, Journal of bacteriology.

[32]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[33]  J. Claverie,et al.  Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. , 1999, Genome research.

[34]  J. Glasner,et al.  Genome-wide expression profiling in Escherichia coli K-12. , 1999, Nucleic acids research.

[35]  M. Q. Zhang Large-scale gene expression data analysis: a new challenge to computational biologists. , 1999, Genome research.

[36]  E S Lander,et al.  Ploidy regulation of gene expression. , 1999, Science.

[37]  H. Goodman,et al.  A cluster of ABA-regulated genes on Arabidopsis thaliana BAC T07M07. , 1999, Genome research.

[38]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Hilsenbeck,et al.  Statistical analysis of array expression data as applied to the problem of tamoxifen resistance. , 1999, Journal of the National Cancer Institute.

[40]  C. Auffray,et al.  The Genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics. , 1999, Genome research.

[41]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[43]  Y. Chen,et al.  Ratio-based decisions and the quantitative analysis of cDNA microarray images. , 1997, Journal of biomedical optics.

[44]  P. Brown,et al.  Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[46]  S. S. Young,et al.  Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[47]  Y. Chaubey Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[48]  B. Holland,et al.  An Improved Sequentially Rejective Bonferroni Test Procedure , 1987 .

[49]  J. Shaffer Modified Sequentially Rejective Multiple Test Procedures , 1986 .

[50]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[51]  T. Fears,et al.  Exact significance levels for multiple binomial testing with application to carcinogenicity screens. , 1981, Biometrics.

[52]  Z. Šidák Rectangular Confidence Regions for the Means of Multivariate Normal Distributions , 1967 .

[53]  S. Dudoit,et al.  STATISTICAL METHODS FOR IDENTIFYING DIFFERENTIALLY EXPRESSED GENES IN REPLICATED cDNA MICROARRAY EXPERIMENTS , 2002 .

[54]  Christina Kendziorski,et al.  On Differential Variability of Expression Ratios: Improving Statistical Inference about Gene Expression Changes from Microarray Data , 2001, J. Comput. Biol..

[55]  Wolfram Liebermeister,et al.  Independent component analysis of gene expression data , 2001, German Conference on Bioinformatics.

[56]  G E Archer,et al.  Maximization of signal derived from cDNA microarrays. , 2001, BioTechniques.

[57]  Mike West,et al.  Bayesian Regression Analysis in the "Large p, Small n" Paradigm with Application in DNA Microarray S , 2000 .

[58]  Gary A. Churchill,et al.  Analysis of Variance for Gene Expression Microarray Data , 2000, J. Comput. Biol..

[59]  J. Claverie Computational methods for the identification of differential and coordinated gene expression. , 1999, Human molecular genetics.

[60]  S Audic,et al.  Visualizing the competitive recognition of TATA-boxes in vertebrate promoters. , 1998, Trends in genetics : TIG.

[61]  L. Penland,et al.  Use of a cDNA microarray to analyse gene expression patterns in human cancer , 1996, Nature Genetics.

[62]  J. Shaffer Multiple Hypothesis Testing , 1995 .

[63]  Joseph F. Heyse,et al.  Adjusting for multiplicity of statistical tests in the analysis of carcinogenicity studies , 1988 .

[64]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[65]  C. Bonferroni Il calcolo delle assicurazioni su gruppi di teste , 1935 .