Characterization of Extreme Points of Multi-Stochastic Tensors
暂无分享,去创建一个
[1] J. Dénes,et al. Latin squares and their applications , 1974 .
[2] Michael K. Ng,et al. Birkhoff-von Neumann Theorem for Multistochastic Tensors , 2014, SIAM J. Matrix Anal. Appl..
[3] Michael K. Ng,et al. The perturbation bound for the Perron vector of a transition probability tensor , 2013, Numer. Linear Algebra Appl..
[4] A. D. Keedwell,et al. Latin Squares: New Developments in the Theory and Applications , 1991 .
[5] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[6] Pierre A. Humblet,et al. Latin routers, design and implementation , 1993 .
[7] M. Ng,et al. On the limiting probability distribution of a transition probability tensor , 2014 .
[8] M. Kreĭn,et al. On extreme points of regular convex sets , 1940 .
[9] Charles J. Colbourn,et al. The complexity of completing partial Latin squares , 1984, Discret. Appl. Math..
[10] T. Evans. Embedding Incomplete Latin Squares , 1960 .
[11] Kung-Ching Chang,et al. On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors , 2013 .
[12] T. Kolda. Multilinear operators for higher-order decompositions , 2006 .
[13] Wen Li,et al. Sensitivity analysis for the generalized singular value decomposition , 2013, Numer. Linear Algebra Appl..
[14] Michael K. Ng,et al. Some bounds for the spectral radius of nonnegative tensors , 2015, Numerische Mathematik.
[15] Michael K. Ng,et al. Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..
[16] B. Khoromskij. Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .