An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products

Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC–MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products.

[1]  Anna Lechner,et al.  Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. , 2015, Chemistry and Biology.

[2]  Michael G Thomas,et al.  Nonribosomal peptide synthetases involved in the production of medically relevant natural products. , 2008, Molecular pharmaceutics.

[3]  Margherita Sosio,et al.  Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. , 2007, Natural product reports.

[4]  J. Vederas,et al.  [Drug discovery and natural products: end of era or an endless frontier?]. , 2011, Biomeditsinskaia khimiia.

[5]  Gisbert Schneider,et al.  SmiLib v2.0: A Java‐Based Tool for Rapid Combinatorial Library Enumeration , 2007 .

[6]  S. Donadio,et al.  Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus) , 1989, Journal of bacteriology.

[7]  B. Shen,et al.  New WS9326A congeners from Streptomyces sp. 9078 inhibiting Brugia malayi asparaginyl-tRNA synthetase. , 2012, Organic letters.

[8]  P. Leadlay,et al.  Structural elucidation studies of erythromycins by electrospray tandem mass spectrometry. , 1999, Rapid communications in mass spectrometry : RCM.

[9]  Richard D. Smith,et al.  Clustering millions of tandem mass spectra. , 2008, Journal of proteome research.

[10]  Roland J. Siezen,et al.  Classification of the Adenylation and Acyl-Transferase Activity of NRPS and PKS Systems Using Ensembles of Substrate Specific Hidden Markov Models , 2013, PloS one.

[11]  P. Leadlay,et al.  Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. , 2004, Chemistry & biology.

[12]  Huan Wang,et al.  Structural investigation of ribosomally synthesized natural products by hypothetical structure enumeration and evaluation using tandem MS , 2014, Proceedings of the National Academy of Sciences.

[13]  Andreas Prlic,et al.  BioJava: an open-source framework for bioinformatics in 2012 , 2012, Bioinform..

[14]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[15]  M. Fischbach,et al.  Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. , 2006, Chemical reviews.

[16]  Chad W. Johnston,et al.  Nonribosomal Assembly of Natural Lipocyclocarbamate Lipoprotein‐Associated Phospholipase Inhibitors , 2013, Chembiochem : a European journal of chemical biology.

[17]  S. Behnken,et al.  Cryptic Polyketide Synthase Genes in Non-Pathogenic Clostridium SPP , 2012, PloS one.

[18]  Steven Salzberg,et al.  Identifying bacterial genes and endosymbiont DNA with Glimmer , 2007, Bioinform..

[19]  J. Thorson,et al.  Deciphering indolocarbazole and enediyne aminodideoxypentose biosynthesis through comparative genomics: insights from the AT2433 biosynthetic locus. , 2006, Chemistry & biology.

[20]  M. Pedras,et al.  Isolation, structure determination, and phytotoxicity of unusual dioxopiperazines from the phytopathogenic fungus Phoma lingam. , 2001, Phytochemistry.

[21]  Roger G. Linington,et al.  Molecular networking as a dereplication strategy. , 2013, Journal of natural products.

[22]  Chad W. Johnston,et al.  Dereplicating nonribosomal peptides using an informatic search algorithm for natural products (iSNAP) discovery , 2012, Proceedings of the National Academy of Sciences.

[23]  D. Sherman,et al.  A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Andreas Prlic,et al.  Sequence analysis , 2003 .

[25]  Huajun Zheng,et al.  Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. , 2012, Journal of the American Chemical Society.

[26]  Bradley S Moore,et al.  Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules , 2013, Proceedings of the National Academy of Sciences.

[27]  Rainer Breitling,et al.  Pep2Path: Automated Mass Spectrometry-Guided Genome Mining of Peptidic Natural Products , 2014, PLoS Comput. Biol..

[28]  Jörn Piel,et al.  Metagenome Mining Reveals Polytheonamides as Posttranslationally Modified Ribosomal Peptides , 2012, Science.

[29]  C. Walsh,et al.  Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. , 2003, Journal of medicinal chemistry.

[30]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[31]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[32]  S. Krasnoff,et al.  Involvement of a Cytochrome P450 Monooxygenase in Thaxtomin A Biosynthesis by Streptomyces acidiscabies , 2002, Journal of bacteriology.

[33]  M. Suzuki,et al.  Biological glycosidation of macrolide aglycones. I. Isolation and characterization of 5-O-mycaminosyl narbonolide and 9-dihydro-5-O-mycaminosyl narbonolide. , 1976, The Journal of antibiotics.

[34]  Pavel A. Pevzner,et al.  NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery , 2014, Journal of natural products.

[35]  R. Süssmuth,et al.  Biosynthetic gene cluster of the non-ribosomally synthesized cyclodepsipeptide skyllamycin: deciphering unprecedented ways of unusual hydroxylation reactions. , 2011, Journal of the American Chemical Society.

[36]  P. Leadlay,et al.  Structural elucidation studies of erythromycins by electrospray tandem mass spectrometry II. , 1999, Rapid communications in mass spectrometry : RCM.

[37]  Chad W. Johnston,et al.  Automated Identification of Depsipeptide Natural Products by an Informatic Search Algorithm , 2015, Chembiochem : a European journal of chemical biology.

[38]  Nuno Bandeira,et al.  Dereplication and De Novo Sequencing of Nonribosomal Peptides , 2009, Nature Methods.

[39]  J. Zucko,et al.  ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures , 2008, Nucleic acids research.

[40]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[41]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[42]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[43]  Tilmann Weber,et al.  Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution , 2007, BMC Evolutionary Biology.

[44]  Morgan A. Wyatt,et al.  Bioinformatic evaluation of the secondary metabolism of antistaphylococcal environmental bacterial isolates. , 2013, Canadian journal of microbiology.

[45]  C. Thibodeaux,et al.  Natural-product sugar biosynthesis and enzymatic glycodiversification. , 2008, Angewandte Chemie.

[46]  R. Reid,et al.  Chalcomycin Biosynthesis Gene Cluster from Streptomyces bikiniensis: Novel Features of an Unusual Ketolide Produced through Expression of the chm Polyketide Synthase in Streptomyces fradiae , 2004, Antimicrobial Agents and Chemotherapy.

[47]  D. Newman,et al.  Natural products as sources of new drugs over the last 25 years. , 2007, Journal of natural products.

[48]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[49]  Carlos Prieto,et al.  NRPSsp: non-ribosomal peptide synthase substrate predictor , 2012, Bioinform..

[50]  Peter Man-Un Ung,et al.  Automated genome mining for natural products , 2009, BMC Bioinformatics.

[51]  Pieter C. Dorrestein,et al.  A mass spectrometry-guided genome mining approach for natural product peptidogenomics , 2011, Nature chemical biology.

[52]  Christopher T. Walsh,et al.  Lessons from natural molecules , 2004, Nature.

[53]  Peter Ertl,et al.  JSME: a free molecule editor in JavaScript , 2013, Journal of Cheminformatics.

[54]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[55]  C. Hertweck,et al.  The biosynthetic logic of polyketide diversity. , 2009, Angewandte Chemie.

[56]  Bradley S Moore,et al.  Genomic basis for natural product biosynthetic diversity in the actinomycetes. , 2009, Natural product reports (Print).

[57]  Nuno Bandeira,et al.  Automated Genome Mining of Ribosomal Peptide Natural Products , 2014, ACS chemical biology.

[58]  Rajesh S. Gokhale,et al.  In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites , 2008, BMC Bioinformatics.

[59]  Roger G. Linington,et al.  Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters , 2014, Cell.

[60]  R. Süssmuth,et al.  The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. , 2015, Nature chemical biology.

[61]  Michael A Fischbach,et al.  Natural products version 2.0: connecting genes to molecules. , 2010, Journal of the American Chemical Society.

[62]  Nuno Bandeira,et al.  Mass spectral molecular networking of living microbial colonies , 2012, Proceedings of the National Academy of Sciences.

[63]  Rajesh S. Gokhale,et al.  Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria , 2004, Nature.

[64]  Peer Bork,et al.  SMART 7: recent updates to the protein domain annotation resource , 2011, Nucleic Acids Res..

[65]  W. Bubb NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity , 2003 .

[66]  Charles L Cantrell,et al.  Natural products in crop protection. , 2009, Bioorganic & medicinal chemistry.

[67]  Ashraf Ibrahim,et al.  Gold biomineralization by a metallophore from a gold-associated microbe. , 2013, Nature chemical biology.

[68]  Nuno Bandeira,et al.  MS/MS networking guided analysis of molecule and gene cluster families , 2013, Proceedings of the National Academy of Sciences.

[69]  P. Bakker,et al.  Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria , 2011, Science.