Data assimilation considerations for improved ocean predictability during the Gulf of Mexico Grand Lagrangian Deployment (GLAD)

Abstract Ocean prediction systems rely on an array of assumptions to optimize their data assimilation schemes. Many of these remain untested, especially at smaller scales, because sufficiently dense observations are very rare. A set of 295 drifters deployed in July 2012 in the north-eastern Gulf of Mexico provides a unique opportunity to test these systems down to scales previously unobtainable. In this study, background error covariance assumptions in the 3DVar assimilation process are perturbed to understand the effect on the solution relative to the withheld dense drifter data. Results show that the amplitude of the background error covariance is an important factor as expected, and a proposed new formulation provides added skill. In addition, the background error covariance time correlation is important to allow satellite observations to affect the results over a period longer than one daily assimilation cycle. The results show the new background error covariance formulations provide more accurate placement of frontal positions, directions of currents and velocity magnitudes. These conclusions have implications for the implementation of 3DVar systems as well as the analysis interval of 4DVar systems.

[1]  J. Sevadjian,et al.  4D-Var data assimilation in a nested, coastal ocean model: A Hawaiian case study , 2013 .

[2]  Ananda Pascual,et al.  Improved description of the ocean mesoscale variability by combining four satellite altimeters , 2006 .

[3]  P. Posey,et al.  US Navy Operational Global Ocean and Arctic Ice Prediction Systems , 2014 .

[4]  Pierre F. J. Lermusiaux,et al.  Verification and training of real-time forecasting of multi-scale ocean dynamics for maritime rapid environmental assessment , 2008 .

[5]  Michael Durand,et al.  The Surface Water and Ocean Topography Mission: Observing Terrestrial Surface Water and Oceanic Submesoscale Eddies , 2010, Proceedings of the IEEE.

[6]  G. Dibarboure,et al.  Mesoscale Mapping Capabilities of Multiple-Satellite Altimeter Missions , 1999 .

[7]  George Haller,et al.  Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures , 2013 .

[8]  H. Ngodock,et al.  Background-error correlation model based on the implicit solution of a diffusion equation , 2010 .

[9]  G. Haller,et al.  Lagrangian coherent structures and mixing in two-dimensional turbulence , 2000 .

[10]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[11]  Peter R. Oke,et al.  Ocean Data Assimilation Systems for GODAE , 2009 .

[12]  Adrian Hines,et al.  Data assimilation in the FOAM operational short‐range ocean forecasting system: a description of the scheme and its impact , 2007 .

[13]  W. Fu Altimetric data assimilation by EnOI and 3DVAR in a tropical pacific model: Impact on the simulation of variability , 2012, Advances in Atmospheric Sciences.

[14]  Roger Daley,et al.  NAVDAS Source Book 2000: NRL Atmospheric Variational Data Assimilation System , 2000 .

[15]  J. Cummings,et al.  Operational multivariate ocean data assimilation , 2005 .

[16]  A. Weaver,et al.  On the diffusion equation and its application to isotropic and anisotropic correlation modelling in variational assimilation , 2013 .

[17]  Lee-Lueng Fu,et al.  Observing Oceanic Submesoscale Processes From Space , 2008 .

[18]  K. Haines Ocean Data Assimilation , 2010 .

[19]  Allan R. Robinson,et al.  An interdisciplinary ocean prediction system: Assimilation strategies ana structured data models , 1996 .

[20]  R. Leben,et al.  Eddy energy and shelf interactions in the Gulf of Mexico , 2001 .

[21]  C. Barron,et al.  Mesoscale characteristics , 2007 .

[22]  H. Hurlburt,et al.  An operational Eddy resolving 1/16° global ocean nowcast/forecast system , 2003 .

[23]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[24]  H. Hurlburt,et al.  Validation Test Report for the Global Ocean Forecast System V3.0 - 1/12 deg HYCOM-NCODA: Phase II , 2010 .

[25]  Helga S. Huntley,et al.  Submesoscale dispersion in the vicinity of the Deepwater Horizon spill , 2014, Proceedings of the National Academy of Sciences.

[26]  Laurence C. Breaker,et al.  A Proposed Definition for Vector Correlation in Geophysics: Theory and Application , 1993 .

[27]  進藤 一俊 The Naval Research Laboratory の深海曳航式高解像度地震探鉱システムについて , 2001 .

[28]  H. Ngodock,et al.  A 4DVAR System for the Navy Coastal Ocean Model. Part 1: System Description and Assimilation of Synthetic Observations in Monterey Bay , 2014 .

[29]  Pierre F. J. Lermusiaux,et al.  Circulation and Intrusions Northeast of Taiwan: Chasing and Predicting Uncertainty in the Cold Dome , 2011 .

[30]  Charlie N. Barron,et al.  The Modular Ocean Data Assimilation System , 2002 .

[31]  P. Malanotte‐Rizzoli Modern approaches to data assimilation in ocean modeling , 1996 .

[32]  L. Fu,et al.  Determining Ocean Circulation and Sea Level from Satellite Altimetry: Progress and Challenges , 2010 .

[33]  T. Özgökmen,et al.  Seasonality of the submesoscale dynamics in the Gulf Stream region , 2013, Ocean Dynamics.

[34]  Allan R. Robinson Forecasting and simulating coastal ocean processes and variabilities with the Harvard Ocean Prediction System , 1999 .

[35]  Jens Schröter,et al.  Data assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments , 2005 .

[36]  D. Menemenlis Inverse Modeling of the Ocean and Atmosphere , 2002 .

[37]  Paul J. Martin,et al.  Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM) , 2006 .

[38]  J. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .

[39]  R. Helber,et al.  Simulating Conditional Deterministic Predictability within Ocean Frontogenesis , 2014 .

[40]  G. Haller,et al.  Geodesic theory of transport barriers in two-dimensional flows , 2012 .

[41]  O. Talagrand,et al.  A Posteriori Validation of Assimilation Algorithms , 2003 .

[42]  A. Bracco,et al.  Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico , 2013 .

[43]  Pierre F. J. Lermusiaux,et al.  Multiscale two-way embedding schemes for free-surface primitive equations in the “Multidisciplinary Simulation, Estimation and Assimilation System” , 2010 .

[44]  A. Kara,et al.  Validation Test Report for the 1/8 deg Global Navy Coastal Ocean Model Nowcast/Forecast System , 2007 .

[45]  Helga S. Huntley,et al.  Ocean Current Estimation Using a Multi-Model Ensemble Kalman Filter During the Grand Lagrangian Deployment Experiment (GLAD) , 2015 .

[46]  Achi Brandt,et al.  Multiscale Algorithm for Atmospheric Data Assimilation , 1997, SIAM J. Sci. Comput..

[47]  Neville Smith,et al.  GODAE The Global Ocean Data Assimilation Experiment , 2009 .

[48]  Farrokh Mistree,et al.  An Inductive Design Exploration Method for Robust Multiscale Materials Design , 2008 .

[50]  J. P.F. On the Mapping of Multivariate Geophysical Fields : Sensitivities to Size , Scales , and Dynamics , 2022 .

[51]  John Derber,et al.  A Global Oceanic Data Assimilation System , 1989 .

[52]  Charlie N. Barron,et al.  Validation Test Report for GDEM4 , 2010 .

[53]  R. Daley Atmospheric Data Analysis , 1991 .

[54]  David J. Stensrud,et al.  The Development of a Hybrid EnKF-3DVAR Algorithm for Storm-Scale Data Assimilation , 2013 .

[55]  G. Dibarboure,et al.  Velocity Mapping Capabilities of Present and Future Altimeter Missions: The Role of High-Frequency Signals , 2002 .

[56]  H. Hurlburt,et al.  Sea Surface Height Predictions from the Global Navy Coastal Ocean Model During 1998-2001 , 2004 .

[57]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[58]  R. Hodur The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) , 1997 .

[59]  Peter R. Oke,et al.  The Bluelink ocean data assimilation system (BODAS) , 2008 .

[60]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[61]  Peter R. Oke,et al.  Ocean data assimilation: a case for ensemble optimal interpolation , 2010 .

[62]  Russ E. Davis,et al.  Drifter observations of coastal surface currents during CODE: The method and descriptive view , 1985 .