Minimal Algorithmic Information Loss Methods for Dimension Reduction, Feature Selection and Network Sparsification.
暂无分享,去创建一个
Hector Zenil | Narsis A. Kiani | Felipe S. Abrahão | Antonio Rueda-Toicen | Felipe S. Abrahao | Jesper Tegn'er | Allan A. Zea | H. Zenil | N. Kiani | Antonio Rueda-Toicen | Jesper Tegn'er
[1] Ronald L. Graham,et al. On the History of the Minimum Spanning Tree Problem , 1985, Annals of the History of Computing.
[2] S. Shen-Orr,et al. Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.
[3] Nikhil Srivastava,et al. Graph sparsification by effective resistances , 2008, SIAM J. Comput..
[4] S. Shen-Orr,et al. Network motifs: simple building blocks of complex networks. , 2002, Science.
[5] Yuval Shavitt,et al. A model of Internet topology using k-shell decomposition , 2007, Proceedings of the National Academy of Sciences.
[6] Sebastian Wernicke,et al. FANMOD: a tool for fast network motif detection , 2006, Bioinform..
[7] Shang-Hua Teng,et al. Spectral sparsification of graphs: theory and algorithms , 2013, CACM.
[8] Lev Muchnik,et al. Identifying influential spreaders in complex networks , 2010, 1001.5285.
[9] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.