Broadcasting on trees and the Ising model

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[3]  H. Kesten,et al.  Additional Limit Theorems for Indecomposable Multidimensional Galton-Watson Processes , 1966 .

[4]  Đuro Kurepa On A-Trees , 1968 .

[5]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[6]  J. Hartigan MINIMUM MUTATION FITS TO A GIVEN TREE , 1973 .

[7]  C. Preston Gibbs States on Countable Sets , 1974 .

[8]  F. Spitzer Markov Random Fields on an Infinite Tree , 1975 .

[9]  Y. Higuchi Remarks on the Limiting GIbbs States on a (d+1)-Tree , 1977 .

[10]  J. A. Cavender Taxonomy with confidence , 1978 .

[11]  J. Snell,et al.  A branching process showing a phase transition , 1979, Journal of Applied Probability.

[12]  J. Laurie Snell,et al.  Random Walks and Electrical Networks , 1984 .

[13]  D. Thouless,et al.  A mean field spin glass with short-range interactions , 1986 .

[14]  Nicholas Pippenger,et al.  Reliable computation by formulas in the presence of noise , 1988, IEEE Trans. Inf. Theory.

[15]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[16]  R. Lyons The Ising model and percolation on trees and tree-like graphs , 1989 .

[17]  I. Vajda Theory of statistical inference and information , 1989 .

[18]  F. Papangelou GIBBS MEASURES AND PHASE TRANSITIONS (de Gruyter Studies in Mathematics 9) , 1990 .

[19]  R. Lyons Random Walks and Percolation on Trees , 1990 .

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  Bruce E. Hajek,et al.  On the maximum tolerable noise for reliable computation by formulas , 1991, IEEE Trans. Inf. Theory.

[22]  Russell Lyons,et al.  Random Walks, Capacity and Percolation on Trees , 1992 .

[23]  Leonard J. Schulman,et al.  Signal propagation, with application to a lower bound on the depth of noisy formulas , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[24]  Domination Between Trees and Application to an Explosion Problem , 2004, math/0404044.

[25]  J. Ruiz,et al.  On the purity of the limiting gibbs state for the Ising model on the Bethe lattice , 1995 .

[26]  Mike Steel,et al.  Five surprising properties of parsimoniously colored trees , 1995 .

[27]  L. Schulman,et al.  Information theory and noisy computation , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[28]  D. Ioffe On the extremality of the disordered state for the Ising model on the Bethe lattice , 1996 .

[29]  Geoffrey Grimmett,et al.  Percolation and disordered systems , 1997 .

[30]  Robin Pemantle,et al.  Unpredictable paths and percolation , 1998 .

[31]  Elchanan Mossel Recursive reconstruction on periodic trees , 1998 .

[32]  William S. Evans,et al.  On the Maximum Tolerable Noise for Reliable Computation by Formulas , 1998, IEEE Trans. Inf. Theory.

[33]  Graham R. Brightwell,et al.  Graph Homomorphisms and Phase Transitions , 1999, J. Comb. Theory, Ser. B.

[34]  Elchanan Mossel Reconstruction on Trees: Beating the Second Eigenvalue , 2001 .