A powerful new approach for the treatment of dispersive media in finite-difference time-domain method

We show here that both the Debye poles and Lorentz pole pairs are special cases of complex-conjugate pole-residue pairs, and the general form of such pairs in fact offers us a much more efficient approach of treating real dispersive media in FDTD than the usual ones that are based on Debye poles and Lorentz pole pairs. We first derive a unified formulation of the auxiliary differential equation method for arbitrary dispersive media by using these pairs. We then use this formulation to perform several numerical experiments, including the permittivity of noble metal Ag and the electroabsorption coefficient of semiconductor quantum wells. The result of these experiments clearly demonstrates the feasibility and advantages of using these pairs in treating dispersive media in FDTD.

[1]  O. S. Heavens,et al.  Optical Properties of Thin Solid Films , 2011 .

[2]  D. Werner,et al.  A novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials , 2004, IEEE Transactions on Antennas and Propagation.

[3]  A. Taflove,et al.  Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. , 2004, Optics express.

[4]  P. Kosmas,et al.  Modeling with the FDTD method for microwave breast cancer detection , 2004, IEEE Transactions on Microwave Theory and Techniques.

[5]  R. Osgood,et al.  Simulation of mode-locked surface-emitting lasers through a finite-difference time-domain algorithm. , 2004, Optics letters.

[6]  W. Freude,et al.  High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media , 2004, IEEE Journal of Quantum Electronics.

[7]  Shaobin Liu,et al.  A novel FDTD formulation for dispersive media , 2003 .

[8]  José A. Pereda,et al.  FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique , 2002 .

[9]  Y. Takayama,et al.  Reinterpretation of the auxiliary differential equation method for FDTD , 2002, IEEE Microwave and Wireless Components Letters.

[10]  P. D. Dapkus,et al.  Active semiconductor microdisk devices , 2002 .

[11]  M. Fox Optical Properties of Solids , 2010 .

[12]  Jeffrey L. Young,et al.  A summary and systematic analysis of FDTD algorithms for linearly dispersive media , 2001 .

[13]  Qing Huo Liu,et al.  An FDTD algorithm with perfectly matched layers for general dispersive media , 2000 .

[14]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[15]  A. Nagra,et al.  FDTD analysis of wave propagation in nonlinear absorbing and gain media , 1998 .

[16]  W Fichtner,et al.  Auxiliary differential equation: efficient implementation in the finite-difference time-domain method. , 1997, Optics letters.

[17]  M. A. Stuchly,et al.  Simple treatment of multi-term dispersion in FDTD , 1997 .

[18]  Allen Taflove,et al.  FDTD Maxwell's equations models for nonlinear electrodynamics and optics , 1997 .

[19]  Carey M. Rappaport,et al.  A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media , 1997 .

[20]  R. J. Luebbers,et al.  Piecewise linear recursive convolution for dispersive media using FDTD , 1996 .

[21]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[22]  Raymond J. Luebbers,et al.  FDTD for Nth-order dispersive media , 1992 .

[23]  G. Parry,et al.  Modelling of electroabsorption in coupled quantum wells with applications to low voltage optical modulation , 1990 .

[24]  F. Wooten,et al.  Optical Properties of Solids , 1973 .

[25]  Shaobin Liu,et al.  A novel FDTD formulation for dispersive media , 2003, IEEE Microwave and Wireless Components Letters.

[26]  Dennis M. Sullivan,et al.  Z-transform theory and the FDTD method , 1996 .

[27]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .