Cycle-finite modules over artin algebras
暂无分享,去创建一个
[1] P. Malicki. The Simple Connectedness of Tame Algebras with Separating Almost Cyclic Coherent Auslander–Reiten Components , 2021, Algebras and Representation Theory.
[2] P. Malicki. The strong simple connectedness of tame algebras with separating almost cyclic coherent Auslander–Reiten components , 2005, Algebras and Representation Theory.
[3] Andrzej Skowro'nski,et al. The structure and homological properties of generalized standard Auslander–Reiten components , 2018, Journal of Algebra.
[4] P. Malicki. Auslander–Reiten Theory for Finite-Dimensional Algebras , 2018 .
[5] K. Yamagata,et al. Frobenius Algebras II: Tilted and Hochschild Extension Algebras , 2017 .
[6] J. A. Peña,et al. Existence of cycle-finite algebras of infinite representation type without directing projective or injective modules , 2017 .
[7] J. Białkowski,et al. Cycles of modules and finite representation type , 2016 .
[8] A. Skowroński. The Krull-Gabriel Dimension of Cycle-Finite Artin Algebras , 2015, Algebras and Representation Theory.
[9] J. A. Peña,et al. Finite cycles of indecomposable modules , 2013, 1306.0929.
[10] Markus Linckelmann,et al. Representation theory of finite-dimensional algebras , 2014 .
[11] A. Skowroński,et al. MODULES NOT BEING THE MIDDLE OF SHORT CHAINS , 2013 .
[12] J. A. Peña,et al. On the number of terms in the middle of almost split sequences over cycle-finite artin algebras , 2013, 1302.2497.
[13] A. Skowroński,et al. Tilted algebras and short chains of modules , 2011, 1112.2960.
[14] K. Yamagata,et al. Frobenius Algebras I: Basic Representation Theory , 2011 .
[15] A. Skowroński,et al. On the indecomposable modules in almost cyclic coherent Auslander-Reiten components , 2011 .
[16] A. Skowroński,et al. Algebras with separating Auslander–Reiten components , 2011 .
[17] K. Yamagata,et al. Frobenius Algebras II , 2011 .
[18] Gizem Karaali. Book Review: Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type , 2008 .
[19] Gizem Karaali. Book Review: Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras , 2008 .
[20] P. Malicki. On the composition factors of indecomposable modules in almost cyclic coherent Auslander–Reiten components☆ , 2006 .
[21] Daniel Simson,et al. Elements of the Representation Theory of Associative Algebras: Techniques of Representation Theory , 2006 .
[22] C. Ringel,et al. Representation Theory of Finite-Dimensional Algebras , 2005 .
[23] A. Skowroński. A construction of complex syzygy periodic modules over symmetric algebras , 2005 .
[24] I. Reiten,et al. Generalized double tilted algebras , 2004 .
[25] F. U. Coelho,et al. Two-sided gluings of tilted algebras , 2003 .
[26] Takayoshi Wakamatsu. On Frobenius algebras , 2003 .
[27] I. Reiten,et al. Characterizations of algebras with small homological dimensions , 2003 .
[28] I. Reiten,et al. Hereditary abelian categories with tilting object over arbitrary base fields , 2002 .
[29] A. Skowroński. Generalized canonical algebras and standard stable tubes , 2001 .
[30] Idun Reiten,et al. Sincere Stable Tubes , 2000 .
[31] A. Skowroński,et al. Almost Cyclic Coherent Components of an Auslander–Reiten Quiver☆☆☆ , 2000 .
[32] F. U. Coelho,et al. Algebras with small homological dimensions , 1999 .
[33] H. Lenzing,et al. Concealed‐Canonical Algebras and Separating Tubular Families , 1999 .
[34] A. Skowroński. Tame Quasi-tilted Algebras , 1998 .
[35] P. Webb. REPRESENTATION THEORY OF ARTIN ALGEBRAS (Cambridge Studies in Advanced Mathematics 36) By Maurice Auslander, Idun Reiten and Sverre O. Smalø: 423 pp., £50.00, ISBN 0 521 41134 3 (Cambridge University Press, 1995). , 1997 .
[36] J. A. de la Peña,et al. Geometric and homological characterizations of polynomial growth strongly simply connected algebras , 1996 .
[37] I. Reiten,et al. Tilting in Abelian Categories and Quasitilted Algebras , 1996 .
[38] H. Lenzing,et al. Quasi-tilted algebras of canonical type , 1996 .
[39] I. Assem,et al. Coil enlargements of algebras , 1995 .
[40] A. Skowroński. Generalized standard Auslander-Reiten components , 1994 .
[41] Shiping Liu,et al. Module categories without short cycles are of finite type , 1994 .
[42] F. U. Coelho,et al. Module categories with infinite radical square zero are of finite type , 1994 .
[43] A. Skowroński. Cycles in Module Categories , 1994 .
[44] Shiping Liu. Semi‐Stable Components of an Auslander–Reiten Quiver , 1993 .
[45] I. Reiten,et al. Short chains and short cycles of modules , 1993 .
[46] S. Liu. Almost split sequences for non-regular modules , 1993 .
[47] Shiping Liu,et al. Degrees of Irreducible Maps and the Shapes of Auslander-Reiten Quivers , 1992 .
[48] W. Crawley-Boevey. Representations of Algebras and Related Topics: Modules of finite length over their endomorphism rings , 1992 .
[49] W. Crawley-Boevey. Tame Algebras and Generic Modules , 1991 .
[50] Yingbo Zhang,et al. The Structure of Stable Components , 1991, Canadian Journal of Mathematics.
[51] O. Kerner,et al. On module categories with nilpotent infinite radical , 1991 .
[52] I. Assem,et al. Minimal representation-infinite coil algebras , 1990 .
[53] C. Ringel. The canonical algebras , 1990 .
[54] W. Crawley-Boevey,et al. The canonical algebras (with an appendix by W. Crawley-Boevey) , 1990 .
[55] W. Crawley-Boevey. On Tame Algebras and Bocses , 1988 .
[56] I. Assem,et al. Algebras with cycle-finite derived categories , 1988 .
[57] W. Geigle. The Krull-Gabriel dimension of the representation theory of a tame hereditary Artin algebra and applications to the structure of exact sequences , 1985 .
[58] C. Ringel. Tame Algebras and Integral Quadratic Forms , 1985 .
[59] C. Ringel. Separating tubular series , 1983 .
[60] S. Brenner,et al. On the number of terms in the middle of an almost split sequence , 1981 .
[61] Ju. A. Drozd,et al. Tame and wild matrix problems , 1980 .
[62] Auslander Maurice,et al. Representation Theory of Artin Algebras I , 1974 .
[63] Maurice Auslander,et al. Representation Theory of Artin Algebras II , 1974 .
[64] Nicolae Popescu,et al. Abelian categories with applications to rings and modules , 1973 .