Near-optimal circuit design for variational quantum optimization

Current state-of-the-art quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device. Implementing each term of the Ising model separately often results in high redundancy, significantly increasing the resources required. We overcome this issue by replacing the term-wise implementation of the Ising model with its equivalent simulation through a quantized version of a classical pseudocode function. This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Functional QAOA (FUNC-QAOA). By exploiting this idea for optimization tasks like the Travelling Salesman Problem and Max- K -Cut, we obtain circuits which are near-optimal with respect to all relevant cost measures (e.g., number of qubits, gates, circuit depth). While we demonstrate the power of FUNC-QAOA only for a particular set of paradigmatic problems, our approach is conveniently applicable for generic optimization problems.

[1]  S. Sondhi,et al.  On Classical and Hybrid Shadows of Quantum States , 2022, 2206.06616.

[2]  A. Glos,et al.  Space-efficient binary optimization for variational quantum computing , 2022, npj Quantum Information.

[3]  A. Glos,et al.  Optimizing the Production of Test Vehicles Using Hybrid Constrained Quantum Annealing , 2022, SN Computer Science.

[4]  A. J. D. Silva,et al.  Linear-depth quantum circuits for multi-qubit controlled gates , 2022, Physical Review A.

[5]  A. Messinger,et al.  Modular Parity Quantum Approximate Optimization , 2022, PRX Quantum.

[6]  E. Dahl,et al.  QAOA of the Highest Order , 2021, 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C).

[7]  Parfait Atchade-Adelomou,et al.  GPS: A New TSP Formulation for Its Generalizations Type QUBO , 2021, Mathematics.

[8]  Jaroslaw Adam Miszczak,et al.  Unconstrained binary models of the travelling salesman problem variants for quantum optimization , 2021, Quantum Information Processing.

[9]  M. Lukin,et al.  Quantum optimization of maximum independent set using Rydberg atom arrays , 2018, Science.

[10]  Jaroslaw Adam Miszczak,et al.  Error mitigation for variational quantum algorithms through mid-circuit measurements , 2021, 2108.10927.

[11]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[12]  Herman Oie Kolden,et al.  Efficient Encoding of the Weighted MAX $$k$$ k -CUT on a Quantum Computer Using QAOA , 2020, SN Comput. Sci..

[13]  Patrick J. Coles,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[14]  Austin Gilliam,et al.  Grover Adaptive Search for Constrained Polynomial Binary Optimization , 2019, Quantum.

[15]  Stuart Hadfield,et al.  On the Representation of Boolean and Real Functions as Hamiltonians for Quantum Computing , 2018, ACM Transactions on Quantum Computing.

[16]  Adam Glos,et al.  Quantum Optimization for the Graph Coloring Problem with Space-Efficient Embedding , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[17]  S. Eidenbenz,et al.  Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[18]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[19]  E. Rieffel,et al.  XY mixers: Analytical and numerical results for the quantum alternating operator ansatz , 2020 .

[20]  Jingbo Wang,et al.  Combinatorial optimization via highly efficient quantum walks , 2019, Physical Review Research.

[21]  Maria Schuld,et al.  Stochastic gradient descent for hybrid quantum-classical optimization , 2019, Quantum.

[22]  Gian Giacomo Guerreschi,et al.  Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians , 2019, npj Quantum Information.

[23]  Jacob Biamonte,et al.  On the universality of the quantum approximate optimization algorithm , 2019, Quantum Information Processing.

[24]  Jean-François Hullo,et al.  Knapsack Problem variants of QAOA for battery revenue optimisation , 2019, ArXiv.

[25]  Austin Gilliam,et al.  Foundational Patterns for Efficient Quantum Computing , 2019, ArXiv.

[26]  Mohammad Qatawneh,et al.  Performance Evaluation of Parallel Bubble Sort Algorithm on Supercomputer IMAN1 , 2019, International Journal of Computer Science and Information Technology.

[27]  Bryan O'Gorman,et al.  Generalized swap networks for near-term quantum computing , 2019, ArXiv.

[28]  Stephan Eidenbenz,et al.  Deterministic Preparation of Dicke States , 2019, FCT.

[29]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[30]  D Zhu,et al.  Training of quantum circuits on a hybrid quantum computer , 2018, Science Advances.

[31]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[32]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[33]  S. Lloyd Quantum approximate optimization is computationally universal , 2018, 1812.11075.

[34]  J. McClean,et al.  Application of fermionic marginal constraints to hybrid quantum algorithms , 2018, 1801.03524.

[35]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[36]  Ming-Xing Luo,et al.  Decompositions of n-qubit Toffoli Gates with Linear Circuit Complexity , 2017, International Journal of Theoretical Physics.

[37]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[38]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[39]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[40]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[41]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[42]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[43]  Massoud Pedram,et al.  Linear-Depth Quantum Circuits for n-qubit Toffoli gates with no Ancilla , 2013, ArXiv.

[44]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[45]  D. McMahon Adiabatic Quantum Computation , 2008 .

[46]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[47]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[48]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[49]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[50]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[51]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.

[52]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .