Data-driven prototyping via natural-language-based GUI retrieval

[1]  Tovi Grossman,et al.  Screen2Words: Automatic Mobile UI Summarization with Multimodal Learning , 2021, UIST.

[2]  Magy Seif El-Nasr,et al.  VINS: Visual Search for Mobile User Interface Design , 2021, CHI.

[3]  Toby Jia-Jun Li,et al.  Screen2Vec: Semantic Embedding of GUI Screens and GUI Components , 2021, CHI.

[4]  M. Jarke,et al.  Impact of using UI Design Patterns on the Workload of Rapid Prototyping of Smartphone Applications: An Experimental Study , 2020, MobileHCI.

[5]  Luis A. Leiva,et al.  Enrico: A Dataset for Topic Modeling of Mobile UI Designs , 2020, MobileHCI.

[6]  Simone Paolo Ponzetto,et al.  GUI2WiRe: Rapid Wireframing with a Mined and Large-Scale GUI Repository using Natural Language Requirements , 2020, 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE).

[7]  Liming Zhu,et al.  Wireframe-based UI Design Search through Image Autoencoder , 2020, ACM Trans. Softw. Eng. Methodol..

[8]  Sungahn Ko,et al.  GUIComp: A GUI Design Assistant with Real-Time, Multi-Faceted Feedback , 2020, CHI.

[9]  Zhenchang Xing,et al.  Gallery D.C.: Design Search and Knowledge Discovery through Auto-created GUI Component Gallery , 2019, Proc. ACM Hum. Comput. Interact..

[10]  Marc Brockschmidt,et al.  CodeSearchNet Challenge: Evaluating the State of Semantic Code Search , 2019, ArXiv.

[11]  Iryna Gurevych,et al.  Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks , 2019, EMNLP.

[12]  Koushik Sen,et al.  When deep learning met code search , 2019, ESEC/SIGSOFT FSE.

[13]  Jeffrey Nichols,et al.  Swire: Sketch-based User Interface Retrieval , 2019, CHI.

[14]  Denys Poshyvanyk,et al.  Guigle: A GUI Search Engine for Android Apps , 2019, 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion).

[15]  Yang Liu,et al.  From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI Implementation , 2018, 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).

[16]  Alessandro Orso,et al.  GUIFetch: Supporting App Design and Development through GUI Search , 2018, 2018 IEEE/ACM 5th International Conference on Mobile Software Engineering and Systems (MOBILESoft).

[17]  Xiaodong Gu,et al.  Deep Code Search , 2018, 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).

[18]  Denys Poshyvanyk,et al.  Machine Learning-Based Prototyping of Graphical User Interfaces for Mobile Apps , 2018, IEEE Transactions on Software Engineering.

[19]  Panagiotis G. Ipeirotis,et al.  Demographics and Dynamics of Mechanical Turk Workers , 2018, WSDM.

[20]  Jeffrey Nichols,et al.  Rico: A Mobile App Dataset for Building Data-Driven Design Applications , 2017, UIST.

[21]  Erik Cambria,et al.  Recent Trends in Deep Learning Based Natural Language Processing , 2017, IEEE Comput. Intell. Mag..

[22]  Akshay Deepak,et al.  Query Expansion Techniques for Information Retrieval: a Survey , 2017, Inf. Process. Manag..

[23]  Gaurav Khandelwal,et al.  Bing developer assistant: improving developer productivity by recommending sample code , 2016, SIGSOFT FSE.

[24]  Ranjitha Kumar,et al.  ERICA: Interaction Mining Mobile Apps , 2016, UIST.

[25]  Dongmei Zhang,et al.  CodeHow: Effective Code Search Based on API Understanding and Extended Boolean Model (E) , 2015, 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE).

[26]  A. Acquisti,et al.  Reputation as a sufficient condition for data quality on Amazon Mechanical Turk , 2014, Behavior research methods.

[27]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[28]  Collin McMillan,et al.  Exemplar: A Source Code Search Engine for Finding Highly Relevant Applications , 2012, IEEE Transactions on Software Engineering.

[29]  Simone Diniz Junqueira Barbosa,et al.  UISKEI: a sketch-based prototyping tool for defining and evaluating user interface behavior , 2012, AVI.

[30]  Scott R. Klemmer,et al.  d.tour: style-based exploration of design example galleries , 2011, UIST.

[31]  Matthew Lease,et al.  Crowdsourcing for search evaluation , 2011, SIGF.

[32]  R. Ledesma,et al.  Cliff's Delta Calculator: A non-parametric effect size program for two groups of observations , 2010 .

[33]  Panagiotis G. Ipeirotis,et al.  Running Experiments on Amazon Mechanical Turk , 2010, Judgment and Decision Making.

[34]  Cyrus Rashtchian,et al.  Collecting Image Annotations Using Amazon’s Mechanical Turk , 2010, Mturk@HLT-NAACL.

[35]  Rada Mihalcea,et al.  Amazon Mechanical Turk for Subjectivity Word Sense Disambiguation , 2010, Mturk@HLT-NAACL.

[36]  Bill Tomlinson,et al.  Who are the crowdworkers?: shifting demographics in mechanical turk , 2010, CHI Extended Abstracts.

[37]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[38]  Hermann Kaindl,et al.  An Integration of Requirements and User Interface Specifications , 2008, 2008 16th IEEE International Requirements Engineering Conference.

[39]  R. Smith,et al.  An Overview of the Tesseract OCR Engine , 2007, Ninth International Conference on Document Analysis and Recognition (ICDAR 2007).

[40]  Jean Vanderdonckt,et al.  Multi-fidelity Prototyping of User Interfaces , 2007, INTERACT.

[41]  Peter Bailey,et al.  Understanding the relationship of information need specificity to search query length , 2007, SIGIR.

[42]  Jean Vanderdonckt,et al.  SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping , 2006, RISE.

[43]  Daniel M. Berry,et al.  A Method for Extracting and Stating Software Requirements that a User Interface Prototype Contains , 2000, Requirements Engineering.

[44]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[45]  D. Ross Jeffery,et al.  Sizing and estimating the coding and unit testing effort for GUI systems , 1996, Proceedings of the 3rd International Software Metrics Symposium.

[46]  Kenneth R. Stern,et al.  Low vs. high-fidelity prototyping debate , 1996, INTR.

[47]  James A. Landay,et al.  Interactive sketching for the early stages of user interface design , 1995, CHI '95.

[48]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[49]  Simone Paolo Ponzetto,et al.  Automated Retrieval of Graphical User Interface Prototypes from Natural Language Requirements , 2021, NLDB.

[50]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[51]  Ansgar Scherp,et al.  Word Embeddings for Practical Information Retrieval , 2017, GI-Jahrestagung.

[52]  Helena Chmura Kraemer,et al.  DSM-5: how reliable is reliable enough? , 2012, The American journal of psychiatry.

[53]  Klaus Krippendorff,et al.  Computing Krippendorff's Alpha-Reliability , 2011 .

[54]  Markus Neuhäuser,et al.  Wilcoxon Signed Rank Test , 2006 .

[55]  Simone Teufel,et al.  An Overview of Evaluation Methods in TREC Ad Hoc Information Retrieval and TREC Question Answering , 2007 .

[56]  Claudio Carpineto,et al.  An information-theoretic approach to automatic query expansion , 2001, TOIS.

[57]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[58]  Niels Christensen,et al.  Prototyping of User-Interfaces , 1984 .

[59]  K. Sparck Jones,et al.  INFORMATION RETRIEVAL TEST COLLECTIONS , 1976 .