10 Learning Patterns in Images

This chapter concerns problems of learning patterns in images and image sequences, and using the obtained patterns for interpreting new images. The chapter concentrates on three problem areas: (i) semantic interpretation of color images of outdoor scenes, (ii) detection of blasting caps in x-ray images of luggage, and (iii) recognizing actions in video image sequences. It discusses the image formation processes in these problem areas, and the choices of representation spaces used in our approaches to solving these problems. The results presented indicate the advantages of applying machine learning to vision.

[1]  Ryszard S. Michalski,et al.  Learning Descriptions of 2D Blob-Like Shapes for Object Recognition in X-Ray Images: An Initial Study , 1994 .

[2]  D R Dance Diagnostic Radiology with X-Rays , 1988 .

[3]  Michael Brady,et al.  Generating and Generalizing Models of Visual Objects , 1987, Artif. Intell..

[4]  Ryszard S. Michalski,et al.  AQVAL/1--Computer Implementation of a Variable-Valued Logic System VL1 and Examples of its Application to Pattern Recognition , 1973, IJCAI 1973.

[5]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[6]  Kenneth A. Kaufman,et al.  Inductive Learning System AQ15c: The Method and User's Guide , 1995 .

[7]  I. Biederman Human image understanding: Recent research and a theory , 1985, Computer Vision Graphics and Image Processing.

[8]  Dmitry B. Goldgof,et al.  Function-based recognition from incomplete knowledge of shape , 1993 .

[9]  Azriel Rosenfeld,et al.  Recognizing Blasting Caps in X-Ray Images , 1996 .

[10]  Nada Lavrac,et al.  The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains , 1986, AAAI.

[11]  Ryszard S. Michalski,et al.  A Variable-Valued Logic System as Applied to Picture Description and Recognition , 1972 .

[12]  Jerzy W. Bala,et al.  The Principal Axes Method for Constructive Induction , 1992, ML.

[13]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[14]  Michael Brady,et al.  The Mechanic's Mate , 1984, ECAI.

[15]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Dean Pomerleau,et al.  Efficient Training of Artificial Neural Networks for Autonomous Navigation , 1991, Neural Computation.

[17]  A. Rosenfeld,et al.  PROGRESS ON VISION THROUGH LEARNING † : A Collaborative Effort of George Mason University and University of Maryland , 1996 .

[18]  Kenneth A. Kaufman,et al.  AQ17 A Multistrategy Learning System The Method and Users Guide , 1993 .

[19]  Thomas M. Strat,et al.  Natural Object Recognition: A Theoretical Framework and Its Implementation , 1991, IJCAI.

[20]  Diane J. Cook,et al.  Learning Membership Functions in a Function-Based Object Recognition System , 1995, J. Artif. Intell. Res..

[21]  Kevin W. Bowyer,et al.  Generic recognition through qualitative reasoning about 3-D shape and object function , 1991, CVPR.

[22]  Peter W. Pachowicz,et al.  Progress on Vision Through Learning at George Mason University , 1994 .

[23]  Ryszard S. Michalski,et al.  THE PRAX APPROACH TO LEARNING A LARGE NUMBER OF TEXTURE CONCEPTS , 1993 .

[24]  Kevin W. Bowyer,et al.  Indexing function-based categories for generic recognition , 1992, CVPR.

[25]  Peter Bock,et al.  Using a hierarchical approach to avoid over-fitting in early vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[26]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Casimir A. Kulikowski,et al.  Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems , 1990 .

[28]  Ruzena Bajcsy,et al.  Shape and Function , 1987, Other Conferences.

[29]  Avinash C. Kak,et al.  Automatic Generation of Object Class Descriptions Using Symbolic Learning Techniques , 1991, AAAI.

[30]  Allen Newell,et al.  A Model for Functional Reasoning in Design , 1971, IJCAI.

[31]  Ehud Rivlin,et al.  Function From Motion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Scott E. Fahlman,et al.  An empirical study of learning speed in back-propagation networks , 1988 .

[33]  L. Stark,et al.  Dissertation Abstract , 1994, Journal of Cognitive Education and Psychology.

[34]  Stanley M. Dunn,et al.  Learning Shape Classes , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Ryszard S. Michalski,et al.  Pattern Recognition as Rule-Guided Inductive Inference , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  B. A. Shepherd,et al.  An Appraisal of a Decision Tree Approach to Image Classification , 1983, IJCAI.

[37]  Michael R. Lowry,et al.  Learning Physical Descriptions From Functional Definitions, Examples, and Precedents , 1983, AAAI.

[38]  Azriel Rosenfeld,et al.  Machine Vision and Learning: Research Issues and Directions , 1994 .

[39]  Azriel Rosenfeld,et al.  Recognition by Functional Parts , 1995, Comput. Vis. Image Underst..

[40]  Ruzena Bajcsy,et al.  Active Investigation of Functionality , 1994 .

[41]  Kevin W. Bowyer,et al.  Generic recognition of articulated objects by reasoning about functionality , 1994, ICPR.