Development of an Atomic Force Microscope and Measurement Concepts for Characterizing Marian Dust and Soil Particles.

Note: Jury: H. Hugli (IMT-UniNE), U. Staufer (IMT-UniNE), W.T. Pike (Imperial College London UK). Reference SAMLAB-THESIS-2002-005 Record created on 2009-05-12, modified on 2016-08-08

[1]  Joseph Leonelli Optical instrumentation for gas emissions monitoring and atmospheric measurements : 7-10 November 1994, McLean, Virginia , 1995 .

[2]  Danick Briand,et al.  Microsystems for diverse applications using recently developed microfabrication techniques , 2000, SPIE MOEMS-MEMS.

[3]  W. T. Pike,et al.  Development of the space SFM for interplantary missions , 2000 .

[4]  N. F. de Rooij,et al.  New integrated axle fabrication for piezoelectric motors based on a rotor clip assembling operation , 1999 .

[5]  J. Stenhouse,et al.  Aerosol deposition in electrostatic precipitators , 1990 .

[6]  Phillip P. Jenkins,et al.  Development of a Mars dust characterization instrument , 1996 .

[7]  Urs Dürig,et al.  DYNAMIC FORCE MICROSCOPY BY MEANS OF THE PHASE-CONTROLLED OSCILLATOR METHOD , 1997 .

[8]  J. Marshall,et al.  Australian Red Dune Sand: A Potential Martian Regolith Analog , 2001 .

[9]  N. F. de Rooij,et al.  Measurement of quartz particles by means of an atomic force microscope for planetary exploration , 2002 .

[10]  M. H. Hecht,et al.  MarsLab: A HEDS Lander Concept , 2000 .

[11]  M. Rott,et al.  The MIDAS experiment for the Rosetta mission , 1998 .

[12]  Lars Montelius,et al.  Direct observation of the tip shape in scanning probe microscopy , 1993 .

[13]  M B Madsen,et al.  Magnetic properties experiments on the Mars Pathfinder lander: preliminary results. , 1997, Science.

[14]  Howard E. McCurdy,et al.  Faster, Better, Cheaper: Low-Cost Innovation in the U.S. Space Program , 2001 .

[15]  M. Arnsdorf,et al.  Calibration of the scanning (atomic) force microscope with gold particles , 1994, Journal of microscopy.

[16]  N. F. de Rooij,et al.  Atomic force microscope for planetary applications , 2000 .

[17]  Alfons Baiker,et al.  Direct imaging of the tip shape by AFM , 1995 .

[18]  Thomas W. Scharf,et al.  Nanotribology studies of Cr, Cr2N and CrN thin films using constant and ramped load nanoscratch techniques , 2001 .

[19]  J. Melngailis Focused ion beam technology and applications , 1987 .

[20]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[21]  H. Hoffmann,et al.  Scanning tunneling microscopy on rough surfaces: Tip‐shape‐limited resolution , 1990 .

[22]  M. Meyyappan,et al.  Study of a Martian Aeolian Sand Analog with MECA Microscopy , 2001 .

[23]  J. Villarrubia Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation , 1997, Journal of research of the National Institute of Standards and Technology.

[24]  K. Eric Drexler,et al.  Molecular tip arrays for molecular imaging and nanofabrication , 1991 .

[25]  G. Landis,et al.  Characterization of Settled Atmospheric Dust by the DART Experiment , 1999 .

[26]  Peter Vettiger,et al.  A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors , 1998 .

[27]  Flemming Jensen,et al.  z calibration of the atomic force microscope by means of a pyramidal tip , 1993 .

[28]  Teodor Gotszalk,et al.  Evaluation and fabrication of AFM array for ESA-Midas/Rosetta space mission , 2001 .

[29]  Diana Nyyssonen,et al.  Two‐dimensional atomic force microprobe trench metrology system , 1991 .

[30]  P. Markiewicz,et al.  Atomic force microscopy probe tip visualization and improvement of images using a simple deconvolution procedure , 1994 .