Physical limits of computation and emergence of life

The computational process is based on the activity linking mathematical equations to a materialized physical world. It consumes energy which lower limit is defined by the set of Planck's values, i.e. by the physical structure of the Universe. We discuss computability from the quantum measurement framework. Effective quantum computation is possible via the maintenance of a long-living cold decoherence-free internal state, which is achieved by applying error-correction commands to it and by screening it from thermal fluctuations. The quantum Zeno effect enables coherent superpositions and entanglement to persist for macroscopic time intervals. Living systems maintain coherent states via realization of their own computing programs aiming them to survive and develop, while their non-computable behavior corresponds to a generative power that arises beyond combinatorial capabilities of the system. Emergence of life brings in the Universe a creative activity that overcomes the limits of computability.

[1]  Koichiro Matsuno,et al.  Forming and maintaining a heat engine for quantum biology. , 2006, Bio Systems.

[2]  V. Braginsky,et al.  Systems with Small Dissipation , 1986 .

[3]  L. Gurwitsch,et al.  Die Mitogenetische Strahlung , 1932 .

[4]  Y. Gunji,et al.  Dynamical infomorphism: form of endo-perspective , 2004 .

[5]  Luis J. Garay,et al.  Black Holes in Bose–Einstein Condensates , 1999 .

[6]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[7]  U. Leonhardt A laboratory analogue of the event horizon using slow light in an atomic medium , 2002, Nature.

[8]  Jiannis K. Pachos,et al.  Quantum computation in optical lattices via global laser addressing , 2004 .

[9]  Josep Maria Font,et al.  Leibniz filters and the strong version of a protoalgebraic logic , 2001, Arch. Math. Log..

[10]  Towards the Observation of Hawking Radiation in Bose–Einstein Condensates , 2001, gr-qc/0110036.

[11]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[12]  P. Veenhuis The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics , 1995 .

[13]  Y. Gunji,et al.  Flexibility in starfish behavior by multi-layered mechanism of self-organization. , 2005, Bio Systems.

[14]  Defining Life the Central Problem in Theoretical Biology , 1996 .

[15]  I. N. Marshall Consciousness and Bose-Einstein condensates , 1989 .

[16]  Quantum monadology: a consistent world model for consciousness and physics. , 2003, Bio Systems.

[17]  Ulf Leonhardt,et al.  Theory of elementary excitations in unstable Bose-Einstein condensates , 2002, cond-mat/0211462.

[18]  A U Igamberdiev,et al.  Foundations of metabolic organization: coherence as a basis of computational properties in metabolic networks. , 1999, Bio Systems.

[19]  K Matsuno,et al.  Quantum and biological computation. , 1995, Bio Systems.

[20]  Abir U Igamberdiev,et al.  Quantum computation, non-demolition measurements, and reflective control in living systems. , 2004, Bio Systems.

[21]  B. Hiley The Undivided Universe , 1993 .

[22]  Louis H. Kauffman,et al.  The mathematics of Charles Sanders Peirce , 2001, Cybern. Hum. Knowing.

[23]  P. Mazur,et al.  Gravitational vacuum condensate stars. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Bekenstein Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.

[25]  Eric Steinhart Leibniz's Palace of the Fates: A Seventeenth-Century Virtual Reality System , 1997, Presence: Teleoperators & Virtual Environments.

[26]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[27]  A U Igamberdiev,et al.  Time, reflectivity and information processing in living systems: a sketch for the unified information paradigm in biology. , 1998, Bio Systems.

[28]  Michael Conrad,et al.  Molecular computing as a link between biological and physical theory , 1982 .

[29]  E A Liberman,et al.  Analog-digital molecular cell computer. , 1979, Bio Systems.

[30]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[31]  J. Wheeler The computer and the universe , 1982 .

[32]  E. Schrödinger What Is Life , 1946 .

[33]  Rolf Landauer Wanted: a physically possible theory of physics , 1967, IEEE Spectrum.

[34]  Noam Chomsky,et al.  वाक्यविन्यास का सैद्धान्तिक पक्ष = Aspects of the theory of syntax , 1965 .

[35]  Andrew F. Rex,et al.  Maxwell's Demon, Entropy, Information, Computing , 1990 .

[36]  M. Mensky Decoherence in continuous measurements: From models to phenomenology , 1997 .

[37]  H. Fröhlich,et al.  Evidence for coherent excitation in biological systems , 1983 .

[38]  A. Igamberdiev Semiokinesis Semiotic autopoiesis of the Universe , 2001 .

[39]  Variation of physical constants, redshift and the arrow of time , 2003, astro-ph/0305117.

[40]  P. Davies,et al.  Does quantum mechanics play a non-trivial role in life? , 2004, Bio Systems.

[41]  E. Liberman,et al.  Molecular quantum computer of neuron. , 1995, Bio Systems.

[42]  P. Dirac The Cosmological Constants , 1937, Nature.

[43]  Y. Gunji,et al.  Orthomodular lattice obtained from addressing a fixed point , 1999 .

[44]  R. Penrose,et al.  Conscious Events as Orchestrated Space-Time Selections , 1996 .

[45]  Stuart R Hameroff,et al.  `Funda-Mentality': is the conscious mind subtly linked to a basic level of the universe? , 1998, Trends in Cognitive Sciences.

[46]  P. C. W. Davies Emergent Biological Principles and the Computational Properties of the Universe , 2004 .

[47]  Continuous quantum measurements and the action uncertainty principle , 1992 .

[48]  Ferdinand de Saussure Course in General Linguistics , 1916 .

[49]  Quasiparticle universes in Bose-Einstein condensates , 2004, cond-mat/0406086.

[50]  M. Silverman,et al.  Coherent degenerate dark matter: a galactic superfluid?1 , 2001 .

[51]  Causal structure of analogue spacetimes , 2004, gr-qc/0408022.

[52]  Petr O. Fedichev,et al.  Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose-Einstein condensate , 2004 .

[53]  R. Paton,et al.  Is there a biology of quantum information? , 2000, Bio Systems.

[54]  Yukio-Pegio Gunji,et al.  Observational heterarchy enhancing active coupling , 2004 .

[55]  The Cosmological Constant and Volume-Preserving Diffeomorphism Invariants , 1993, hep-th/9310007.

[56]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[57]  Y. Gunji,et al.  Formal model of internal measurement: alternate changing between recursive definition and domain equation , 1997 .

[58]  Teruaki Nakagomi Mathematical formulation of Leibnizian world: a theory of individual-whole or interior-exterior reflective systems. , 2003, Bio Systems.

[59]  J. Chang,et al.  Evidence of non-classical (squeezed) light in biological systems , 2002 .

[60]  P. C. W. Davies Emergent biological principles and the computational properties of the universe: Explaining it or explaining it away , 2004, Complex..

[61]  A U Igamberdiev,et al.  Quantum mechanical properties of biosystems: a framework for complexity, structural stability, and transformations. , 1993, Bio Systems.

[62]  Eric Steinhart Leibniz's Palace of the Fates: A 17th Century Virtual Reality System , 1997, Presence Teleoperators Virtual Environ..

[63]  Rolf Landauer,et al.  Computation and physics: Wheeler's meaning circuit? , 1986 .

[64]  G. Gamow,et al.  A possible relation between cosmological quantities and the characteristics of elementary particles. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Igamberdiev Semiosis and reflectivity in life and consciousness , 1999 .

[66]  M. Eigen,et al.  The Hypercycle: A principle of natural self-organization , 2009 .

[67]  S. Lloyd Computational capacity of the universe. , 2001, Physical review letters.