Block copolymer compatibilized polymer: fullerene blend morphology and properties

[1]  Bumjoon J. Kim,et al.  Molecular structure-device performance relationship in polymer solar cells based on indene-C60 bis-adduct derivatives , 2015, Korean Journal of Chemical Engineering.

[2]  A. Karim,et al.  Synthesis and characterization of novel fulleropyrrolidine in P3HT blended bulk heterojunction solar cells , 2014 .

[3]  Meng-Huan Jao,et al.  Additives for morphology control in high-efficiency organic solar cells , 2013 .

[4]  G. Hadziioannou,et al.  Crystallization-Driven Enhancement in Photovoltaic Performance through Block Copolymer Incorporation into P3HT:PCBM Blends , 2013 .

[5]  Jamie M. Messman,et al.  Ternary behavior and systematic nanoscale manipulation of domain structures in P3HT/PCBM/P3HT-b-PEO films , 2012 .

[6]  M. Thelakkat,et al.  Synthesis of Amphiphilic Rod–Coil P3HT-b-P4VP Carrying a Long Conjugated Block Using NMRP and Click Chemistry , 2012 .

[7]  Yu-Min Shen,et al.  Morphological modification induced by external electric field during solution process of organic solar cells , 2012 .

[8]  E. A. Payzant,et al.  PS‐b‐P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics , 2011, Advanced materials.

[9]  Argiris Laskarakis,et al.  Evolution of vertical phase separation in P3HT:PCBM thin films induced by thermal annealing , 2011 .

[10]  David G Lidzey,et al.  Depletion of PCBM at the Cathode Interface in P3HT/PCBM Thin Films as Quantified via Neutron Reflectivity Measurements , 2010, Advanced materials.

[11]  Ian W. Hamley,et al.  Ordering in thin films of block copolymers: Fundamentals to potential applications , 2009 .

[12]  Jae Kwan Lee,et al.  Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells , 2009 .

[13]  Byung-Kwan Yu,et al.  Time‐Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells , 2009 .

[14]  N. Turro,et al.  “Click” Dielectrics: Use of 1,3‐Dipolar Cycloadditions to Generate Diverse Core‐Shell Nanoparticle Structures with Applications to Flexible Electronics , 2008 .

[15]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[16]  T. Kowalewski,et al.  Conducting Block Copolymers of Regioregular Poly(3‐hexylthiophene) and Poly(methacrylates): Electronic Materials with Variable Conductivities and Degrees of Interfibrillar Order , 2007 .

[17]  Oliver Ambacher,et al.  Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells , 2006 .

[18]  C. Macosko,et al.  Block copolymer compatibilization of cocontinuous polymer blends , 2005 .

[19]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[20]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[21]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[22]  Christopher W. Macosko,et al.  Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization , 1995 .

[23]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[24]  J. Koberstein,et al.  Compatibilizing effect of block copolymers added to the polymer/polymer interface , 1989 .