Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry

Spectroscopic ellipsometry (SE) has been used to routinely characterize amorphous silicon nitride and diamond thin films. Since SE measurements do not yield quantities of interest directly, the SE data must first be fit to a model to obtain useful parameters such as film thickness and optical functions. Recently, we have developed the Tauc-Lorentz (TL) model for the optical functions of amorphous materials [Appl. Phys. Lett. 69, 371373, 2137 (1996).], which has been very useful in interpreting these SE results. A 4parameter model is usually sufficient to describe the optical functions of the thin film to the accuracy of the ellipsometer. One of these parameters, the band gap Eg, correlates with other mechanical and chemical properties of the film, such as the silicon-to-nitrogen ratio in silicon nitride films, and to the sp 3 -bonded carbon fraction and the hardness of

[1]  Vladimir I. Merkulov,et al.  Characterization of Pulsed-Laser Deposited Amorphous Diamond Films by Spectroscopic Ellipsometry , 1998 .

[2]  Modified Forouhi and Bloomer dispersion model for the optical constants of amorphous hydrogenated carbon thin films , 1994 .

[3]  Gerald Earle Jellison,et al.  Data analysis for spectroscopic ellipsometry , 1993 .

[4]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[5]  Bloomer,et al.  Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. , 1986, Physical review. B, Condensed matter.

[6]  G. Jellison,et al.  Two-modulator generalized ellipsometry: theory. , 1997, Applied optics.

[7]  A. Jayatissa,et al.  Empirical dielectric function of amorphous materials for spectroscopic ellipsometry , 1995 .

[8]  Adachi Optical dispersion relations in amorphous semiconductors. , 1991, Physical review. B, Condensed matter.

[9]  Gerald Earle Jellison,et al.  Erratum: ‘‘Parameterization of the optical functions of amorphous materials in the interband region’’ [Appl. Phys. Lett. 69, 371 (1996)] , 1996 .

[10]  Ajeet Rohatgi,et al.  Spectroscopic ellipsometry characterization of thin-film silicon nitride , 1997 .

[11]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[12]  Gerald Earle Jellison,et al.  Optical functions of silicon determined by two-channel polarization modulation ellipsometry , 1992 .

[13]  W. McGahan,et al.  Optical characterization and modeling of amorphous hydrogenated carbon films , 1994 .

[14]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[15]  Vladimir I. Merkulov,et al.  Structure and optical properties of amorphous diamond films prepared by ArF laser ablation as a function of carbon ion kinetic energy , 1998 .

[16]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[17]  G. Jellison,et al.  Two-modulator generalized ellipsometry: experiment and calibration. , 1997, Applied optics.

[18]  F. Wooten,et al.  Optical Properties of Solids , 1972 .

[19]  G. Jellison,et al.  Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics. , 1997, Applied optics.

[20]  A. Röseler IR spectroscopic ellipsometry: instrumentation and results , 1993 .