Demonstration of a Hybrid FSO/VLC Link for the Last Mile and Last Meter Networks

In this paper, a hybrid free-space optical and visible light communication (FSO/VLC) system was experimentally demonstrated as a solution to overcome the last mile and last meter access networks bandwidth bottleneck. We evaluate the system performance of a multiband carrier-less amplitude and phase (<italic>m</italic>-CAP) modulation scheme for a range of FSO/VLC link lengths and <italic>m</italic>-CAP parameters (i.e., the roll-off factor of the filters and a number of subcarriers) in terms of the data rate <inline-formula><tex-math notation="LaTeX">$R_b$</tex-math></inline-formula> (i.e., spectral efficiency). We show that for the configuration with a 1-m VLC link the 10-CAP offers more than a 40% improvement in the measured <inline-formula><tex-math notation="LaTeX">$R_b$</tex-math></inline-formula> compared to 2-CAP for the same bit error rate target. The <inline-formula><tex-math notation="LaTeX">$R_b$</tex-math></inline-formula> penalty due to the extension of a VLC-link span from 1 to 3 m reaches to 12.6 Mb/s for the 10-CAP scheme (i.e., <inline-formula><tex-math notation="LaTeX">$\sim$</tex-math></inline-formula>39% degradation in <inline-formula><tex-math notation="LaTeX">$R_b$</tex-math></inline-formula>). To fully cover all aspects of the hybrid FSO/VLC system, we also investigate the atmospheric turbulence effect on the 500-m FSO link where <inline-formula><tex-math notation="LaTeX">$R_b$</tex-math></inline-formula> is decreased by 30% for the refractive index structure parameter <inline-formula><tex-math notation="LaTeX">$C_n^2$</tex-math></inline-formula> of 2.4 <inline-formula><tex-math notation="LaTeX">$\times\; 10^{-15}$</tex-math></inline-formula> m<inline-formula><tex-math notation="LaTeX">$^{-2/3}$</tex-math></inline-formula> compared to a clear channel condition.

[1]  Mohsen Kavehrad,et al.  A Novel Statistical Channel Model for Turbulence-Induced Fading in Free-Space Optical Systems , 2015, Journal of Lightwave Technology.

[2]  S. Kar,et al.  Experimental Study on Beam Wander Under Varying Atmospheric Turbulence Conditions , 2011, IEEE Photonics Technology Letters.

[3]  Yuefeng Ji,et al.  Hybrid Optical Wireless Network for Future SAGO-Integrated Communication Based on FSO/VLC Heterogeneous Interconnection , 2017, IEEE Photonics Journal.

[4]  Klaus-Dieter Langer,et al.  Optical Wireless Communication Systems in the Mb/s to Gb/s Range, Suitable for Industrial Applications , 2010, IEEE/ASME Transactions on Mechatronics.

[5]  Zabih Ghassemlooy,et al.  Variable m-CAP for bandlimited Visible Light Communications , 2017, 2017 IEEE International Conference on Communications Workshops (ICC Workshops).

[6]  Robert J. Baxley,et al.  Peak-to-average power ratio and illumination-to-communication efficiency considerations in visible light OFDM systems , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Ziyan Jia,et al.  Visible light communication system based on multi-level pulse code modulation , 2013, 2013 5th IEEE International Conference on Broadband Network & Multimedia Technology.

[8]  L. Andrews Field guide to atmospheric optics , 2004 .

[9]  G Cossu,et al.  3.4 Gbit/s visible optical wireless transmission based on RGB LED. , 2012, Optics express.

[10]  Manav R. Bhatnagar,et al.  Experimental Investigation of All-Optical Relay-Assisted 10 Gb/s FSO Link Over the Atmospheric Turbulence Channel , 2017, Journal of Lightwave Technology.

[11]  Wasiu O. Popoola,et al.  Visible Light Communications: Theory and Applications , 2016 .

[12]  Zabih Ghassemlooy,et al.  On the m-CAP Performance with Different Pulse Shaping Filters Parameters for Visible Light Communications , 2017, IEEE Photonics Journal.

[13]  Harald Haas,et al.  A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications , 2017 .

[14]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[15]  Zabih Ghassemlooy,et al.  Evaluation of Multi-band Carrier-less Amplitude and Phase Modulation Performance for VLC under Various Pulse Shaping Filter Parameters , 2016, OPTICS.

[16]  Shlomi Arnon,et al.  An Experimental Comparison of Different Bit-and-Power-Allocation Algorithms for DCO-OFDM , 2014, Journal of Lightwave Technology.

[17]  Ali Shahpari,et al.  Optical wireless transmission at 1.6-Tbit/s (16×100  Gbit/s) for next-generation convergent urban infrastructures , 2013 .

[18]  I. White,et al.  High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications , 2016, IEEE Photonics Technology Letters.

[19]  D. O’brien,et al.  High-Speed Visible Light Communications Using Multiple-Resonant Equalization , 2008, IEEE Photonics Technology Letters.

[20]  Sien Chi,et al.  Performance Comparison of OFDM Signal and CAP Signal Over High Capacity RGB-LED-Based WDM Visible Light Communication , 2013, IEEE Photonics Journal.

[21]  Idelfonso Tafur Monroy,et al.  Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links , 2014, Journal of Lightwave Technology.