Optical diffraction tomography and image reconstruction to measure host cell alterations caused by divergent Plasmodium species.

[1]  Ji-Hoon Park,et al.  In-depth biological analysis of alteration in Plasmodium knowlesi-infected red blood cells using a noninvasive optical imaging technique , 2022, Parasites & vectors.

[2]  Yongkeun Park,et al.  Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography. , 2021, Biomedical optics express.

[3]  R. Agrawal,et al.  Comparing infrared spectroscopic methods for the characterization of Plasmodium falciparum-infected human erythrocytes , 2021, Communications Chemistry.

[4]  Yongkeun Park,et al.  Inverse problem solver for multiple light scattering using modified Born series , 2021, Optica.

[5]  Yongkeun Park,et al.  Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning , 2021, BME Frontiers.

[6]  Yongkeun Park,et al.  Three-dimensional label-free visualization and quantification of polyhydroxyalkanoates in individual bacterial cell in its native state , 2021, Proceedings of the National Academy of Sciences.

[7]  C. Brangwynne,et al.  TGF-β-induced DACT1 Biomolecular Condensates Repress Wnt Signaling To Promote Bone Metastasis , 2021, Nature Cell Biology.

[8]  YoungJu Jo,et al.  Deep-learning-based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells , 2020, eLife.

[9]  Min Jae Lee,et al.  Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes , 2020, Proceedings of the National Academy of Sciences.

[10]  Yeon Wook Kim,et al.  Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution , 2020, bioRxiv.

[11]  H. Chung,et al.  Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography. , 2020, Biomedical optics express.

[12]  M. Blackman,et al.  The parasitophorous vacuole of the blood-stage malaria parasite , 2020, Nature Reviews Microbiology.

[13]  Jin Won Kim,et al.  Label-Free Tomographic Imaging of Lipid Droplets in Foam Cells for Machine-Learning-Assisted Therapeutic Evaluation of Targeted Nanodrugs. , 2020, ACS nano.

[14]  N. Tolia,et al.  Getting in: The structural biology of malaria invasion , 2019, PLoS pathogens.

[15]  C. Tabin,et al.  Protein and lipid mass concentration measurement in tissues by stimulated Raman scattering microscopy , 2019, bioRxiv.

[16]  G. Karniadakis,et al.  Cytoskeleton Remodeling Induces Membrane Stiffness and Stability Changes of Maturing Reticulocytes. , 2018, Biophysical journal.

[17]  L. Rénia,et al.  Quantitative mass spectrometry of human reticulocytes reveal proteome‐wide modifications during maturation , 2018, British journal of haematology.

[18]  P. Preiser,et al.  Three Is a Crowd - New Insights into Rosetting in Plasmodium falciparum. , 2017, Trends in parasitology.

[19]  Kyoohyun Kim,et al.  Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus , 2016, bioRxiv.

[20]  Emma S Sherling,et al.  Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes , 2016, FEMS microbiology reviews.

[21]  L. Rénia,et al.  Rheopathologic Consequence of Plasmodium vivax Rosette Formation , 2016, PLoS neglected tropical diseases.

[22]  L. Tilley,et al.  Plasmodium species: master renovators of their host cells , 2016, Nature Reviews Microbiology.

[23]  Pilhan Kim,et al.  Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice , 2016, Scientific Reports.

[24]  Kyoohyun Kim,et al.  Optical diffraction tomography techniques for the study of cell pathophysiology , 2016, 1603.00592.

[25]  Jong Chul Ye,et al.  Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. , 2015, Optics express.

[26]  Esther G. L. Koh,et al.  Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. , 2015, Blood.

[27]  L. Rénia,et al.  Glycophorin C (CD236R) mediates vivax malaria parasite rosetting to normocytes. , 2014, Blood.

[28]  Nicholas I Smith,et al.  Raman spectroscopic analysis of malaria disease progression via blood and plasma samples. , 2013, The Analyst.

[29]  YongKeun Park,et al.  High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography , 2013, Journal of biomedical optics.

[30]  M. Mota,et al.  A Novel Flow Cytometric Hemozoin Detection Assay for Real-Time Sensitivity Testing of Plasmodium falciparum , 2013, PloS one.

[31]  T. Yeo,et al.  Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi , 2013, Malaria Journal.

[32]  Subhajit Karmakar,et al.  Computational Investigation on the Photoacoustics of Malaria Infected Red Blood Cells , 2012, PloS one.

[33]  C. Depeursinge,et al.  Quantitative phase imaging in biomedicine , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[34]  A. Mbengue,et al.  Human erythrocyte remodelling during Plasmodium falciparum malaria parasite growth and egress , 2012, British journal of haematology.

[35]  YongKeun Park,et al.  Optical imaging techniques for the study of malaria. , 2012, Trends in biotechnology.

[36]  YongKeun Park,et al.  Real-time quantitative phase imaging with a spatial phase-shifting algorithm. , 2011, Optics letters.

[37]  Leann Tilley,et al.  Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion , 2011, Proceedings of the National Academy of Sciences.

[38]  T. Gilberger,et al.  Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. , 2011, Nature communications.

[39]  Dave Richard,et al.  Super resolution dissection of coordinated events behind malaria parasite invasion of the human erythrocyte , 2014 .

[40]  YongKeun Park,et al.  Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells , 2009, BiOS.

[41]  Leann Tilley,et al.  Malaria parasite proteins that remodel the host erythrocyte , 2009, Nature Reviews Microbiology.

[42]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[43]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.

[44]  Bojana Gligorijevic,et al.  Stage independent chloroquine resistance and chloroquine toxicity revealed via spinning disk confocal microscopy. , 2008, Molecular and biochemical parasitology.

[45]  Kasturi Haldar,et al.  Erythrocyte remodeling by malaria parasites , 2007, Current opinion in hematology.

[46]  L Xu,et al.  Refractive index measurement for biomaterial samples by total internal reflection , 2006, Physics in medicine and biology.

[47]  Jun Liu,et al.  Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[49]  F. Yakuphanoglu,et al.  Refractive index and optical absorption properties of the complexes of a cyclobutane containing thiazolyl hydrazone ligand , 2005 .

[50]  Don McNaughton,et al.  Resonance Raman spectroscopy reveals new insight into the electronic structure of beta-hematin and malaria pigment. , 2004, Journal of the American Chemical Society.

[51]  Kamolrat Silamut,et al.  The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. , 2004, The Journal of infectious diseases.

[52]  R. Coppel,et al.  Mapping the Binding Domains Involved in the Interaction between the Plasmodium falciparum Knob-associated Histidine-rich Protein (KAHRP) and the Cytoadherence Ligand P. falciparumErythrocyte Membrane Protein 1 (PfEMP1)* , 1999, The Journal of Biological Chemistry.

[53]  S. Ward,et al.  Central Role of Hemoglobin Degradation in Mechanisms of Action of 4-Aminoquinolines, Quinoline Methanols, and Phenanthrene Methanols , 1998, Antimicrobial Agents and Chemotherapy.

[54]  R. Rosenberg,et al.  Continuous in vitro propagation of the malaria parasite Plasmodium vivax. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Sullivan,et al.  Plasmodium Hemozoin Formation Mediated by Histidine-Rich Proteins , 1996, Science.

[56]  P. Rosenthal,et al.  Plasmodium falciparum: effects of proteinase inhibitors on globin hydrolysis by cultured malaria parasites. , 1995, Experimental parasitology.

[57]  I. Gluzman,et al.  Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. , 1994, The EMBO journal.

[58]  C D Fitch,et al.  Hemozoin production by Plasmodium falciparum: variation with strain and exposure to chloroquine. , 1993, Biochimica et biophysica acta.

[59]  E. Wolf Three-dimensional structure determination of semi-transparent objects from holographic data , 1969 .

[60]  A. Rowe,et al.  Liquid nitrogen preservation of red blood cells for transfusion; a low glycerol-rapid freeze procedure. , 1968, Cryobiology.

[61]  R. Barer Refractometry and interferometry of living cells. , 1957, Journal of the Optical Society of America.

[62]  R. Barer,et al.  Refractometry of Living Cells Part I. Basic Principles , 1954 .

[63]  R. Barer Determination of Dry Mass, Thickness, Solid and Water Concentration in Living Cells , 1953, Nature.

[64]  Clement Yuen,et al.  Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis. , 2012, Journal of biomedical optics.

[65]  I W Sherman,et al.  Amino acid metabolism and protein synthesis in malarial parasites. , 1977, Bulletin of the World Health Organization.