PATTERN FACTOR REDUCTION IN A REVERSE FLOW GAS TURBINE COMBUSTOR USING ANGLED DILUTION JETS

An advanced method for dilution zone mixing in reverse flow gas turbine combustors was experimentally investigated. To enhance circumferential mixing, dilution jets were injected with a high circumferential (swirl) velocity component. The jets on the outer liner were angled in one direction while the jets on the inner liner were angled in the opposite direction.To demonstrate reduced pattern factor, AlliedSignal Engines’ F109 combustor was tested at sea level takeoff conditions. For the baseline (conventional) configuration, the experimental results showed that large scale circumferential temperature non-uniformities at the turbine inlet were caused primarily by fuel flow variations from nozzle to nozzle. These temperature variations were significantly reduced by angled dilution jets. A pattern factor of 0.102 was achieved compared to the best case pattern factor of 0.163 for the baseline configuration. The only combustor modification was the dilution hole configuration. The radial average temperature profile produced by angled dilution jets was very similar to the profile produced by the baseline configuration.Copyright © 1994 by ASME