Quantitative contributions of solution atoms, precipitates and deformation to microstructures and properties of Al–Sc–Zr alloys

[1]  J. Čížek,et al.  Influence of dislocations on precipitation processes in hot-extruded Al–Mn–Sc–Zr alloy , 2018, International Journal of Materials Research.

[2]  R. Guan,et al.  A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects , 2017, Acta Metallurgica Sinica (English Letters).

[3]  Zhanyong Zhao,et al.  A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates , 2017 .

[4]  Z. Yin,et al.  Effect of aging time on precipitation behavior, mechanical and corrosion properties of a novel Al-Zn-Mg-Sc-Zr alloy , 2016 .

[5]  O. Melikhova,et al.  Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation , 2015, Metallurgical and Materials Transactions A.

[6]  Z. Jia,et al.  Effect of minor Sc and Zr addition on microstructure and properties of ultra-high strength aluminum alloy , 2014 .

[7]  S. Hanada,et al.  Effect of cooling rate on morphology of primary particles in Al-Sc-Zr master alloy , 2014 .

[8]  A. Pinto,et al.  The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys , 2012 .

[9]  W. J. Li,et al.  Heat-resistant Al–0.2Sc–0.04Zr electrical conductor , 2012 .

[10]  P. V. Venkitakrishnan,et al.  Microstructure and Mechanical Properties of Friction Stir Lap Welded Aluminum Alloy AA2014 , 2012 .

[11]  D. Seidman,et al.  Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys , 2011 .

[12]  David C. Dunand,et al.  Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys , 2011 .

[13]  D. Seidman,et al.  Ambient- and high-temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr (at.%) alloys , 2011 .

[14]  D. Seidman,et al.  Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging , 2010 .

[15]  N. Žaludová,et al.  Phase transformations in isochronally annealed mould-cast and cold-rolled Al–Sc–Zr-based alloy , 2010 .

[16]  K. Marthinsen,et al.  Precipitation kinetic of Al3(Sc,Zr) dispersoids in aluminium , 2009 .

[17]  V. Radmilović,et al.  Monodisperse Al3(LiScZr) core/shell precipitates in Al alloys , 2008 .

[18]  A. Deschamps,et al.  In situ small-angle scattering study of the precipitation kinetics in an Al–Zr–Sc alloy , 2007 .

[19]  E. Clouet,et al.  Using cluster dynamics to model electrical resistivity measurements in precipitating AlSc alloys , 2006, cond-mat/0611524.

[20]  X. Du Study on ageing and creep of Al–0.1Zr alloy , 2006 .

[21]  D. Seidman,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part II-coarsening of Al3(Sc1−xZrx) precipitates , 2005 .

[22]  V. Radmilović,et al.  Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys , 2005 .

[23]  K. Marthinsen,et al.  Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys , 2004 .

[24]  S. Fujikawa,et al.  Kinetics of precipitation in AlSc alloys and low temperature solid solubility of scandium in aluminium studied by electrical resistivity measurements , 1993 .

[25]  T. Rostova,et al.  Some features of decomposition for the solid solution of scandium in aluminum , 1983 .

[26]  Haohong Jiang,et al.  Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum , 2013 .

[27]  S. R. Rajesh,et al.  Microstructure and Mechanical properties of Hybrid Laser-Friction Stir Welding between AA6061-T6 Al alloy and AZ31 Mg alloy , 2011 .

[28]  R. R. Sawtell,et al.  Mechanical properties and microstructures of Al-Mg-Sc alloys , 1990 .