Exponential space computation of Gröbner bases
暂无分享,去创建一个
[1] Ernst W. Mayr,et al. An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals , 1996, ISSAC '96.
[2] L. Csanky,et al. Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[3] L. Csanky,et al. Fast Parallel Matrix Inversion Algorithms , 1976, SIAM J. Comput..
[4] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..
[5] Oscar H. Ibarra,et al. A Note on the Parallel Complexity of Computing the Rank of Order n Matrices , 1980, Inf. Process. Lett..
[6] Bruno Buchberger,et al. A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.
[7] André Galligo,et al. Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.
[8] Dung T. Huynh,et al. A Superexponential Lower Bound for Gröbner Bases and Church-Rosser Commutative Thue Systems , 1986, Inf. Control..
[9] J. Hopcroft,et al. Fast parallel matrix and GCD computations , 1982, FOCS 1982.
[10] Victor Y. Pan,et al. Complexity of Parallel Matrix Computations , 1987, Theor. Comput. Sci..
[11] Thomas Dubé,et al. The Structure of Polynomial Ideals and Gröbner Bases , 2013, SIAM J. Comput..
[12] Franco P. Preparata,et al. An Improved Parallel Processor Bound in Fast Matrix Inversion , 1978, Inf. Process. Lett..
[13] Stuart J. Berkowitz,et al. On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..
[14] Steven Fortune,et al. Parallelism in random access machines , 1978, STOC.
[15] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[16] Ketan Mulmuley,et al. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.
[17] Volker Weispfennig,et al. Constructing universal Groebner bases , 1987 .
[18] Victor Y. Pan,et al. Parallel Evaluation of the Determinant and of the Inverse of a Matrix , 1989, Inf. Process. Lett..
[19] H. Michael Möller,et al. Upper and Lower Bounds for the Degree of Groebner Bases , 1984, EUROSAM.
[20] Grete Hermann,et al. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .
[21] Teresa Krick,et al. Membership problem, Representation problem and the Computation of the Radical for one-dimensional Ideals , 1991 .
[22] Allan Borodin,et al. Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[23] A. Meyer,et al. The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .
[24] Ernst W. Mayr,et al. On Polynomial Ideals, Their Complexity, and Applications , 1995, FCT.
[25] Joos Heintz,et al. On the Intrinsic Complexity of Elimination Theory , 1993, J. Complex..
[26] Lyn J. Miller. Analogs of Gröbner Bases in Polynomial Rings over a Ring , 1996, J. Symb. Comput..
[27] Teo Mora,et al. The Gröbner Fan of an Ideal , 1988, J. Symb. Comput..
[28] Lorenzo Robbiano,et al. On the Theory of Graded Structures , 1986, J. Symb. Comput..
[29] Bruno Buchberger,et al. A note on the complexity of constructing Gröbner-Bases , 1983, EUROCAL.
[30] Kenneth Steiglitz,et al. Combinatorial Optimization: Algorithms and Complexity , 1981 .
[31] F. S. Macaulay,et al. The Algebraic Theory of Modular Systems , 1972 .