Kobayashi pseudometric on hyperkähler manifolds

The Kobayashi pseudometric on a complex manifold M is the maximal pseudometric such that any holomorphic map from the Poincare disk to M is distance-decreasing. Kobayashi has conjectured that this pseudometric vanishes on Calabi-Yau manifolds. Using ergodicity of complex structures, we prove this result for any hyperk¨ahler manifold if it admits a deformation with a Lagrangian fibration, and its Picard rank is not maximal. The SYZ conjecture claims that any parabolic nef line bundle on a deformation of a given hyperkahler manifold is semi-ample. We prove that the Kobayashi pseudometric vanishes for all hyperkahler manifolds satisfying the SYZ property. This proves the Kobayashi conjecture for K3 surfaces and their Hilbert schemes.

[1]  D. Matsushita Higher direct images of Lagrangian fibrations , 2000, math/0010283.

[2]  E. Markman Lagrangian Fibrations of Holomorphic-Symplectic Varieties of K3[n]-Type , 2013, 1301.6584.

[3]  Daniel Huybrechts Compact Hyperkähler Manifolds , 2003 .

[4]  A. Fujiki On the de Rham Cohomology Group of a Compact Kähler Symplectic Manifold , 1987 .

[5]  J. Demailly Hyperbolic algebraic varieties and holomorphic differential equations , 2012 .

[6]  Arend Bayer,et al.  MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations , 2013, Inventiones mathematicae.

[7]  M. Zaidenberg ON HYPERBOLIC EMBEDDING OF COMPLEMENTS OF DIVISORS AND THE LIMITING BEHAVIOR OF THE KOBAYASHI-ROYDEN METRIC , 1986 .

[8]  J. Cassels,et al.  Rational Quadratic Forms , 1978 .

[9]  E. Markman A survey of Torelli and monodromy results for holomorphic-symplectic varieties , 2011, 1101.4606.

[10]  Shôshichi Kobayashi Intrinsic distances, measures and geometric function theory , 1976 .

[11]  Justin Sawon Abelian fibred holomorphic symplectic manifolds , 2003, math/0404362.

[12]  T. Peternell,et al.  Non-algebraic Hyperkaehler manifolds , 2008, 0804.1682.

[13]  Campana Frederic,et al.  Fibrations meromorphes sur certaines varietes a fibre canonique trivial , 2008 .

[14]  De-Qi Zhang,et al.  Zariski F-decomposition and Lagrangian fibration on hyperk\"ahler manifolds , 2009, 0907.5311.

[15]  Shôshichi Kobayashi Hyperbolic complex spaces , 1998 .

[16]  Steven Lu The Kobayashi pseudometric on algebraic manifold and a canonical fibration , 2002, math/0206170.

[17]  M. Verbitsky A global Torelli theorem for hyperkahler manifolds , 2009, 0908.4121.

[18]  Jun-Muk Hwang Base manifolds for fibrations of projective irreducible symplectic manifolds , 2007, 0711.3224.

[19]  R. Brody Compact manifolds in hyperbolicity , 1978 .

[20]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[21]  Y. Kawamata Pluricanonical systems on minimal algebraic varieties , 1985 .

[22]  Y. Siu Every Stein subvariety admits a Stein neighborhood , 1976 .

[23]  F. Catanese A Superficial Working Guide to Deformations and Moduli , 2011, 1106.1368.

[24]  C. Voisin On some problems of Kobayashi and Lang; algebraic approaches , 2003 .

[25]  M. Verbitsky,et al.  Families of Lagrangian fibrations on hyperkähler manifolds , 2012, 1208.4626.

[26]  E. Markman Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections , 2009, 0912.4981.

[27]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[28]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[29]  S. Mukai,et al.  The uniruledness of the moduli space of curves of genus 11 , 1983 .

[30]  M. Verbitsky Hyperkähler Syz Conjecture and Semipositive Line Bundles , 2008, 0811.0639.

[31]  Dennis Sullivan,et al.  Infinitesimal computations in topology , 1977 .

[32]  Compact hyperkähler manifolds: basic results , 1997, alg-geom/9705025.

[33]  H. Royden The extension of regular holomorphic maps , 1974 .

[34]  S. Lang,et al.  Principal Homogeneous Spaces Over Abelian Varieties , 1958 .

[35]  Eckart Viehweg,et al.  Quasi-projective moduli for polarized manifolds , 1995, Ergebnisse der Mathematik und ihrer Grenzgebiete.

[36]  Algebraic surfaces holomorphically dominable by ℂ2 , 1999, math/0005232.

[37]  D. Huybrechts,et al.  Compact Hyperkähler Manifolds: Basic Results , 2022 .

[38]  M. Verbitsky Cohomology of compact hyperkähler manifolds and its applications , 1996 .

[39]  D. Greb,et al.  Base Manifolds for Lagrangian Fibrations on Hyperkähler Manifolds , 2013, 1303.3919.

[40]  M. Verbitsky Ergodic complex structures on hyperkähler manifolds , 2013, 1306.1498.

[41]  F. Bogomolov On the decomposition of kähler manifolds with trivial canonical class , 1974 .