Changes in efflux pump activity of Clostridium beijerinckii throughout ABE fermentation

[1]  P. Patakova,et al.  Role of efflux in enhancing butanol tolerance of bacteria. , 2020, Journal of biotechnology.

[2]  David M. Blersch,et al.  Enhancing the tolerance of Clostridium saccharoperbutylacetonicum to lignocellulosic-biomass-derived inhibitors for efficient biobutanol production by overexpressing efflux pumps genes from Pseudomonas putida. , 2020, Bioresource technology.

[3]  Yang Gu,et al.  A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum , 2020, Applied Microbiology and Biotechnology.

[4]  Long Liu,et al.  Microbial response to acid stress: mechanisms and applications , 2019, Applied Microbiology and Biotechnology.

[5]  Y. Tashiro,et al.  Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems , 2019, Applied Microbiology and Biotechnology.

[6]  Shangtian Yang,et al.  Engineering Clostridium for improved solvent production: recent progress and perspective , 2019, Applied Microbiology and Biotechnology.

[7]  D. Kell,et al.  Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli , 2019, BMC Microbiology.

[8]  J. Qiao,et al.  Identification of functional butanol-tolerant genes from Escherichia coli mutants derived from error-prone PCR-based whole-genome shuffling , 2019, Biotechnology for Biofuels.

[9]  K. Sedlář,et al.  Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level , 2019, Scientific Reports.

[10]  J. D. de Winde,et al.  Solvent Tolerance in Bacteria: Fulfilling the Promise of the Biotech Era? , 2018, Trends in biotechnology.

[11]  B. Luisi,et al.  Multidrug efflux pumps: structure, function and regulation , 2018, Nature Reviews Microbiology.

[12]  K. Kupkova,et al.  Transcription profiling of butanol producer Clostridium beijerinckii NRRL B-598 using RNA-Seq , 2018, BMC Genomics.

[13]  Runan Dong,et al.  Native efflux pumps of Escherichia coli responsible for short and medium chain alcohol , 2018 .

[14]  Danielle Tullman-Ercek,et al.  A Pseudomonas putida efflux pump acts on short-chain alcohols , 2018, Biotechnology for Biofuels.

[15]  P. Patakova,et al.  Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions , 2018, Biotechnology for Biofuels.

[16]  M. Viveiros,et al.  Active antimicrobial efflux in Staphylococcus epidermidis: building up of resistance to fluoroquinolones and biocides in a major opportunistic pathogen , 2018, Journal of Antimicrobial Chemotherapy.

[17]  K. Kupkova,et al.  Comparative analysis of high butanol tolerance and production in clostridia. , 2017, Biotechnology advances.

[18]  N. Price,et al.  Genomic, Transcriptional, and Phenotypic Analysis of the Glucose Derepressed Clostridium beijerinckii Mutant Exhibiting Acid Crash Phenotype. , 2017, Biotechnology journal.

[19]  Jufang Wang,et al.  Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium. , 2017, Journal of biotechnology.

[20]  L. Amaral,et al.  New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria , 2017, Molecules.

[21]  L. Piddock,et al.  How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps , 2016, mBio.

[22]  K. Melzoch,et al.  Evaluation of viability, metabolic activity and spore quantity in clostridial cultures during ABE fermentation. , 2016, FEMS microbiology letters.

[23]  E. Yu,et al.  The AbgT family: A novel class of antimetabolite transporters , 2016, Protein science : a publication of the Protein Society.

[24]  K. Sedlář,et al.  Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation , 2016, Biotechnology for Biofuels.

[25]  W. J. Turner,et al.  Trade-Offs in Improving Biofuel Tolerance Using Combinations of Efflux Pumps. , 2015, ACS synthetic biology.

[26]  Sergey N. Boyarskiy,et al.  Getting pumped: membrane efflux transporters for enhanced biomolecule production. , 2015, Current opinion in chemical biology.

[27]  Jun Hyoung Lee,et al.  Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions. , 2015, Journal of biotechnology.

[28]  D. Kell,et al.  Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. , 2015, Trends in biotechnology.

[29]  K. Sigler,et al.  Changes in Membrane Plasmalogens of Clostridium pasteurianum during Butanol Fermentation as Determined by Lipidomic Analysis , 2015, PloS one.

[30]  M. T. Moreira,et al.  Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation , 2015, Biotechnology Letters.

[31]  Karl A. Hassan,et al.  Homologs of the Acinetobacter baumannii AceI Transporter Represent a New Family of Bacterial Multidrug Efflux Systems , 2015, mBio.

[32]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[33]  Jay D. Keasling,et al.  Improving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering , 2014, mBio.

[34]  Douglas B. Kell,et al.  How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion , 2014, Front. Pharmacol..

[35]  A. Yan,et al.  Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. , 2014, Biochemical and biophysical research communications.

[36]  Fionn Murtagh,et al.  Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? , 2011, Journal of Classification.

[37]  Danielle Tullman-Ercek,et al.  Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. , 2014, ACS synthetic biology.

[38]  Luis H. Reyes,et al.  Genetic Determinants for n-Butanol Tolerance in Evolved Escherichia coli Mutants: Cross Adaptation and Antagonistic Pleiotropy between n-Butanol and Other Stressors , 2013, Applied and Environmental Microbiology.

[39]  K. Schwarz,et al.  A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum--cellular behavior in adaptation to n-butanol. , 2012, Journal of biotechnology.

[40]  Mary J. Dunlop,et al.  Synthetic Feedback Loop Model for Increasing Microbial Biofuel Production Using a Biosensor , 2012, Front. Microbio..

[41]  E. Papoutsakis,et al.  Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. , 2012, Current opinion in biotechnology.

[42]  H. Blaschek,et al.  Genome-wide dynamic transcriptional profiling in clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq , 2012, BMC Genomics.

[43]  J. Keasling,et al.  Engineering microbial biofuel tolerance and export using efflux pumps , 2011, Molecular systems biology.

[44]  Luis H. Reyes,et al.  Genomic Library Screens for Genes Involved in n-Butanol Tolerance in Escherichia coli , 2011, PloS one.

[45]  L. Amaral,et al.  Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance , 2011, BMC Microbiology.

[46]  G. Kaatz,et al.  Ethidium Bromide MIC Screening for Enhanced Efflux Pump Gene Expression or Efflux Activity in Staphylococcus aureus , 2010, Antimicrobial Agents and Chemotherapy.

[47]  Carla C. C. R. de Carvalho,et al.  Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli , 2009, Journal of biological engineering.

[48]  E. Papoutsakis,et al.  Genome‐scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub‐systems , 2008, Biotechnology and bioengineering.

[49]  E. Papoutsakis,et al.  Development and Application of Flow-Cytometric Techniques for Analyzing and Sorting Endospore-Forming Clostridia , 2008, Applied and Environmental Microbiology.

[50]  E. Papoutsakis,et al.  The transcriptional program underlying the physiology of clostridial sporulation , 2008, Genome Biology.

[51]  L. Amaral,et al.  Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. , 2008, International journal of antimicrobial agents.

[52]  S. Günther,et al.  Limits of propidium iodide as a cell viability indicator for environmental bacteria , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[53]  K. V. van Wijk,et al.  Consequences of membrane protein overexpression in Escherichia coli , 2007 .

[54]  P. Fernandes,et al.  Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. , 2003, International journal of antimicrobial agents.

[55]  C. Tomas,et al.  Overexpression of groESL in Clostridium acetobutylicum Results in Increased Solvent Production and Tolerance, Prolonged Metabolism, and Changes in the Cell's Transcriptional Program , 2003, Applied and Environmental Microbiology.

[56]  N. Brown,et al.  The MerR family of transcriptional regulators. , 2003, FEMS microbiology reviews.

[57]  R. Goodacre,et al.  Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells , 2001, Journal of Industrial Microbiology and Biotechnology.

[58]  E. Duque,et al.  Three Efflux Pumps Are Required To Provide Efficient Tolerance to Toluene in Pseudomonas putidaDOT-T1E , 2001, Journal of bacteriology.

[59]  J. D. de Bont,et al.  Active Efflux of Organic Solvents byPseudomonas putida S12 Is Induced by Solvents , 1998, Journal of bacteriology.

[60]  S. Taylor,et al.  A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates. , 1994, The Journal of biological chemistry.

[61]  L. K. Bowles,et al.  Effects of butanol on Clostridium acetobutylicum , 1985, Applied and environmental microbiology.

[62]  J. Zhang,et al.  Chicken feather and wheat straw hydrolysate for direct utilization in biobutanol production , 2020 .

[63]  B. Dam,et al.  Adaptation of ethidium bromide fluorescence assay to monitor activity of efflux pumps in bacterial pure cultures or mixed population from environmental samples , 2020 .

[64]  Danielle Tullman-Ercek,et al.  Transcriptional feedback regulation of efflux protein expression for increased tolerance to and production of n-butanol. , 2016, Metabolic engineering.

[65]  I. Maddox,et al.  The cause of "acid-crash" and "acidogenic fermentations" during the batch acetone-butanol-ethanol (ABE-) fermentation process. , 2000, Journal of molecular microbiology and biotechnology.