On discrete short-time Fourier analysis
暂无分享,去创建一个
[1] Vivek K. Goyal,et al. Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.
[2] M. Vetterli. Filter banks allowing perfect reconstruction , 1986 .
[3] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[4] H. Feichtinger,et al. A unified approach to atomic decompositions via integrable group representations , 1988 .
[5] Helmut Bölcskei,et al. Oversampled modulated filter banks , 1998 .
[6] Martin Vetterli,et al. Tight Weyl-Heisenberg frames in l2(Z) , 1998, IEEE Trans. Signal Process..
[7] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[8] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[9] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[10] M. Portnoff. Time-frequency representation of digital signals and systems based on short-time Fourier analysis , 1980 .
[11] R. Balian. Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .
[12] Martin Vetterli,et al. Oversampled filter banks , 1998, IEEE Trans. Signal Process..
[13] F. Low. Complete sets of wave packets , 1985 .
[14] A. Janssen. The duality condition for Weyl-Heisenberg frames , 1998 .
[15] D. Slepian. Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.
[16] Jont B. Allen,et al. Short term spectral analysis, synthesis, and modification by discrete Fourier transform , 1977 .