Infinite Time Decidable Equivalence Relation Theory
暂无分享,去创建一个
[1] A. Kechris. Classical descriptive set theory , 1987 .
[2] Jouko Väänänen,et al. Reflection principles for the continuum , 2008 .
[3] Calvin C. Moore,et al. Ergodic equivalence relations, cohomology, and von Neumann algebras. II , 1977 .
[4] Philip D. Welch,et al. Eventually infinite time Turing machine degrees: infinite time decidable reals , 2000, Journal of Symbolic Logic.
[5] Alain Louveau,et al. Countable Borel Equivalence Relations , 2002, J. Math. Log..
[6] Alain Louveau,et al. A Glimm-Effros dichotomy for Borel equivalence relations , 1990 .
[7] Alexander S. Kechris,et al. Linear algebraic groups and countable Borel equivalence relations , 2000 .
[8] V. Kanovei,et al. Some new results on Borel irreducibility of equivalence relations , 2002, math/0203102.
[9] A. Kanamori. The higher infinite : large cardinals in set theory from their beginnings , 2005 .
[10] Joel David Hamkins. A simple maximality principle , 2003, J. Symb. Log..
[11] A. Kanamori. The Higher Infinite , 1994 .
[12] Philip D. Welch,et al. The Length of Infinite Time Turing Machine Computations , 2000 .
[13] Su Gao. Invariant Descriptive Set Theory , 2008 .
[14] S. Barry Cooper,et al. Minimality Arguments for Infinite Time Turing Degrees , 1999 .
[15] Andrew Lewis,et al. Post's problem for supertasks has both positive and negative solutions , 2002, Arch. Math. Log..
[16] Joel David Hamkins,et al. INFINITE TIME COMPUTABLE MODEL THEORY , 2008 .
[17] Greg Hjorth,et al. Borel Equivalence Relations and Classifications of Countable Models , 1996, Ann. Pure Appl. Log..
[18] Simon Thomas,et al. Martin’s conjecture and strong ergodicity , 2009, Arch. Math. Log..
[19] Julia F. Knight,et al. Turing computable embeddings , 2007, J. Symb. Log..
[20] Joel David Hamkins,et al. Infinite Time Turing Machines , 1998, Journal of Symbolic Logic.
[21] Harvey M. Friedman,et al. A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.