Reduced dimensionality quantum reactive scattering: H2+CN→H+HCN

We apply a recently developed, reduced dimensionality quantum theory of diatom–diatom reactive scattering [Q. Sun and J. M. Bowman, Int. J. Quantum Chem., Symp. 23, 115 (1989] to the exoergic H2+CN→H+HCN reaction, for zero total angular momentum. A new semiempirical, three‐dimensional potential surface, which is based in part on ab initio calculations of the saddle point properties is also reported. Reaction probabilities for the ground and first excited bending states of HCN are calculated for total energies up to 1.0 and 1.06 eV, respectively. The results show a strong preference for formation of HCN (0vb1) and HCN (0vb2), vb=0 and 1, starting with ground vibrational state reactants. Reaction probabilities for vibrational excitation of H2 or CN are also reported for both bending states of HCN. Vibrational excitation of H2 is found to be far more effective in promoting reaction than vibrational excitation of CN.

[1]  D. Neuhauser,et al.  Time dependent three‐dimensional body frame quantal wave packet treatment of the H+H2 exchange reaction on the Liu–Siegbahn–Truhlar–Horowitz (LSTH) surface , 1989 .

[2]  B. C. Garrett,et al.  Ab Initio Predictions and Experimental Confirmation of Large Tunneling Contributions to Rate Constants and Kinetic Isotope Effects for Hydrogen Atom Transfer Reactions , 1986 .

[3]  I. Smith,et al.  Rate constants for the reactions CN(ν=0), CN(ν=1)+H2, D2→HCN, DCN+H, D between 295 and 768 K, and comparisons with transition state theory calculations , 1988 .

[4]  M. Karplus,et al.  Potential Energy Surface for H3 , 1964 .

[5]  Donald L. Thompson,et al.  Ab initio dynamics: HeH+ + H2 → He + H3+ (C2ν) classical trajectories using a quantum mechanical potential‐energy surface , 1973 .

[6]  J. Muckerman Monte Carlo Calculations of Energy Partitioning and Isotope Effects in Reactions of Fluorine Atoms with H2, HD, and D2 , 1971 .

[7]  R. Hanson,et al.  High temperature determination of the rate coefficient for the reaction H2O + CN → HCN + OH , 1983 .

[8]  Y. Morino,et al.  Anharmonic Potential Constants and Vibrational and Rotational Parameters for Hydrogen Cyanide , 1969 .

[9]  David E. Manolopoulos,et al.  Quantum scattering via the log derivative version of the Kohn variational principle , 1988 .

[10]  W. Jackson,et al.  Laser measurements of the effects of vibrational energy on the reactions of CN , 1984 .

[11]  G. Schatz Quantum reactive scattering using hyperspherical coordinates: Results for H+H2 and Cl+HCl , 1988 .

[12]  W. Miller,et al.  Quantum reactive scattering via the S‐matrix version of the Kohn variational principle: Differential and integral cross sections for D+H2 →HD+H , 1989 .

[13]  J. Linderberg,et al.  Reactive scattering in hyperspherical coordinates , 1987 .

[14]  H. Gg. Wagner,et al.  Reaktionen von Molekülen in definierten Schwingungszuständen (IV). Reaktionen schwingungsangeregter Cyan-Radikale mit Wasserstoff und einfachen Kohlenwasserstoffen† , 1977 .

[15]  N. Brown,et al.  A molecular dynamics study of the reaction H2+OH→H2O+H , 1985 .

[16]  J. Bowman,et al.  Reaction dynamics for O(3P)+H2, D2, and HD. VI. Comparison of TST and reduced dimensionality quantum and quasiclassical isotope effects with experiment , 1987 .

[17]  G. Schatz,et al.  Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F+H2 → FH+H reaction , 1975 .

[18]  J. Linderberg,et al.  Hyperspherical coordinates in four particle systems , 1983 .

[19]  George C. Schatz,et al.  A quasiclassical trajectory study of reagent vibrational excitation effects in the OH+H2→H2O+H reaction , 1981 .

[20]  G. Schatz How symmetric stretch excitation in a triatomic molecule can be more efficient than asymmetric stretch excitation in enhancing reaction rates in atomic plus triatom reactions , 1979 .

[21]  A. Wagner,et al.  An Ab initio determination of the rate constant for H2 + CN → H + HCN , 1986 .

[22]  J. Light,et al.  Atom–diatom reactive scattering. II. H+H2 and its isotopomers, J=0 , 1989 .

[23]  J. Manz,et al.  The F + H2 (v = 0) →FH (v′ ⩽ 3>) + H reaction: Quantum collinear reaction probabilities on three different potential energy surfaces , 1978 .

[24]  T. Dunning,et al.  Theoretical studies of the reactions of HCN with atomic hydrogen , 1985 .

[25]  J. Bowman,et al.  Reduced dimensionality diatom–diatom reactive scattering: Application to a model H2+A2→H+HA2 reaction , 1990 .

[26]  Michael Baer,et al.  Theory of chemical reaction dynamics , 1985 .

[27]  M. Baer Integral equation approach to atom-diatom exchange processes , 1989 .

[28]  S. Carter,et al.  Frequency optimized potential energy functions for the ground-state surfaces of HCN and HCP , 1982 .

[29]  H. Schaefer,et al.  Further theoretical examination of the F + H2 entrance channel barrier , 1985 .

[30]  F. B. Brown,et al.  An improved calculation of the transition state for the F + H2 reaction , 1985 .

[31]  G. Schatz,et al.  Reduced-dimensionality quantum calculations of the thermal rate coefficient for the Cl+HCl→ClH+Cl reaction: Comparison with centrifugal-sudden distorted wave, coupled channel hyperspherical, and experimental results , 1990 .

[32]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. III. Small θ behavior and corrigenda , 1989 .

[33]  J. Launay,et al.  Hyperspherical description of collinear reactive scattering , 1982 .

[34]  G. Schatz,et al.  On the use of mass scaled cluster coordinates to describe polyatomic molecule reaction dynamics: Application to O + CS2 → SO + CS , 1981 .

[35]  S. Cuccaro,et al.  Hyper-spherical coordinate reactive scattering using variational surface functions , 1989 .

[36]  J. K. Badenhoop,et al.  Metastable H+3 formation and decay in the reaction of highly excited H+2 with H2 , 1987 .

[37]  G. Schatz,et al.  Quantum reactive scattering for A+BCD→AB+CD reactions: Coupled channel distorted wave theory , 1986 .