On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties

The objective of this work is to find out optimum settings for a fractional PIλ controller in order to fulfill three different robustness specifications of design for the compensated system, taking advantage of the fractional order, λ. Since this fractional controller has one parameter more than the conventional PI controller, one more specification can be fulfilled, improving the performance of the system and making it more robust to plant uncertainties, such as gain and time constant changes. For the tuning of the controller an iterative optimization method has been used, based on a nonlinear function minimization. Two real examples of application are presented and simulation results are shown to illustrate the effectiveness of this kind of unconventional controllers.

[1]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[2]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[3]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[4]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[5]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[6]  M. E. Bise,et al.  Fractional calculus application in control systems , 1990, IEEE Conference on Aerospace and Electronics.

[7]  A. Oustaloup La dérivation non entière , 1995 .

[8]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[9]  Joseba Quevedo,et al.  Digital Control: Past, Present and Future of PID Control , 2000 .

[10]  Tore Hägglund,et al.  The future of PID control , 2000 .

[11]  Vicente Feliu,et al.  On Fractional PID Controllers: A Frequency Domain Approach , 2000 .

[12]  H. T,et al.  The future of PID control , 2001 .

[13]  B. M. V. Jara Modelado y control de sistemas caracterizados por ecuaciones íntegro-diferenciales de orden fraccional , 2001 .

[14]  Jeng-Fan Leu,et al.  Design of Optimal Fractional-Order PID Controllers , 2002 .

[15]  B.M. Vinagre,et al.  Linear fractional order control of a DC-DC buck converter , 2003, 2003 European Control Conference (ECC).

[16]  J. A. Tenreiro Machado,et al.  A Fractional Calculus Perspective of PID Tuning , 2003 .

[17]  Control fraccionario de convertidores electrónicos de potencia tipo buck , 2003 .

[18]  Vicente Feliu,et al.  Fractional Sliding Mode Control of a DC-DC Buck Converter with Application to DC Motor Drives , 2003 .

[19]  Kevin L. Moore,et al.  Relay feedback tuning of robust PID controllers with iso-damping property , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  R. Caponetto,et al.  PARAMETER TUNING OF A NON INTEGER ORDER PID CONTROLLER , .