Triazatruxene–Rhodamine-Based Ratiometric Fluorescent Chemosensor for the Sensitive, Rapid Detection of Trivalent Metal Ions: Aluminium (III), Iron (III) and Chromium (III)

[1]  Haydar Kilic,et al.  A rhodamine-based novel turn on trivalent ions sensor , 2018, Journal of Photochemistry and Photobiology A: Chemistry.

[2]  Xiaoju Wang,et al.  Design and synthesis of a novel tripod rhodamine derivative for trivalent metal ions detection , 2018, Sensors and Actuators B: Chemical.

[3]  A. E. Sadak,et al.  Synthesis of Novel meso‐Indole‐ and meso‐Triazatruxene‐BODIPY Dyes , 2017 .

[4]  P. Roy,et al.  Rhodamine based chemosensor for trivalent cations: Synthesis, spectral properties, secondary complex as sensor for arsenate and molecular logic gates , 2017 .

[5]  P. Korrapati,et al.  A TBET based BODIPY-rhodamine dyad for the ratiometric detection of trivalent metal ions and its application in live cell imaging , 2016 .

[6]  R. Martínez‐Máñez,et al.  Selective chromo-fluorogenic detection of trivalent cations in aqueous environments using a dehydration reaction , 2016 .

[7]  Serkan Erdemir,et al.  Anthracene excimer-based "turn on" fluorescent sensor for Cr(3+) and Fe(3+) ions: Its application to living cells. , 2016, Talanta.

[8]  H. Tong,et al.  Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors , 2016 .

[9]  Sanyuan Ding,et al.  Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes , 2015 .

[10]  P. Korrapati,et al.  A novel FRET 'off-on' fluorescent probe for the selective detection of Fe³⁺, Al³⁺ and Cr³⁺ ions: its ultrafast energy transfer kinetics and application in live cell imaging. , 2015, Biosensors & bioelectronics.

[11]  R. Martínez‐Máñez,et al.  A Chalcone-Based Highly Selective and Sensitive Chromofluorogenic Probe for Trivalent Metal Cations. , 2015, ChemPlusChem.

[12]  Vinod K. Gupta,et al.  A highly selective colorimetric and turn-on fluorescent chemosensor based on 1-(2-pyridylazo)-2-naphthol for the detection of aluminium(III) ions , 2015 .

[13]  Demin Zhou,et al.  A single molecular probe for multi-analyte (Cr³⁺, Al³⁺ and Fe³⁺) detection in aqueous medium and its biological application. , 2014, Chemical communications.

[14]  S. Anker,et al.  [Iron deficiency in chronic heart failure: from diagnosis to therapy]. , 2014, Deutsche medizinische Wochenschrift.

[15]  Hong-Wei An,et al.  Fluorescence quenching of triazatruxene-based glycocluster induced by peanut agglutinin lectin , 2013 .

[16]  Jinchao Zhang,et al.  A triazatruxene-based glycocluster as a fluorescent sensor for concanavalin A. , 2013, Chemistry.

[17]  B. Tang,et al.  A pyridinyl-functionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations. , 2013, Chemical communications.

[18]  Sangita Das,et al.  A naphthalimide–quinoline based probe for selective, fluorescence ratiometric sensing of trivalent ions , 2013 .

[19]  Koushik Dhara,et al.  A ratiometric fluorescent chemosensor for iron: discrimination of Fe2+ and Fe3+ and living cell application. , 2012, The Analyst.

[20]  Juyoung Yoon,et al.  Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. , 2012, Chemical reviews.

[21]  G. Perry,et al.  Role of metal dyshomeostasis in Alzheimer's disease. , 2011, Metallomics : integrated biometal science.

[22]  E. M. García-Frutos,et al.  Very Large Photoconduction Enhancement Upon Self‐Assembly of a New Triindole Derivative in Solution‐Processed Films , 2011 .

[23]  E. M. García-Frutos,et al.  New triindole-based organic semiconductors: structure-property relationships , 2010, Organic Photonics + Electronics.

[24]  G. Ortaggi,et al.  A hydrophilic three side-chained triazatruxene as a new strong and selective G-quadruplex ligand. , 2009, Organic & biomolecular chemistry.

[25]  E. M. García-Frutos,et al.  Synthesis and preferred all-syn conformation of C3-symmetrical N-(hetero)arylmethyl triindoles. , 2008, Chemistry.

[26]  Wenyong Lai,et al.  Kinked Star‐Shaped Fluorene/ Triazatruxene Co‐oligomer Hybrids with Enhanced Functional Properties for High‐Performance, Solution‐Processed, Blue Organic Light‐Emitting Diodes , 2008 .

[27]  A. Jain,et al.  An iron(III) ion-selective sensor based on a mu-bis(tridentate) ligand. , 2007, Talanta.

[28]  V. Gupta,et al.  Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. , 2007, Analytica chimica acta.

[29]  Wenyong Lai,et al.  Monodisperse Six-Armed Triazatruxenes: Microwave-Enhanced Synthesis and Highly Efficient Pure-Deep-Blue Electroluminescence , 2006 .

[30]  H. Tajmir-Riahi,et al.  A Comparative Study of Calf Thymus DNA Binding to Cr(III) and Cr(VI) Ions , 2000, The Journal of Biological Chemistry.

[31]  M. Rogers,et al.  A preliminary study of dietary aluminium intake and risk of Alzheimer's disease. , 1999, Age and ageing.

[32]  A. W. Czarnik,et al.  A LONG-WAVELENGTH FLUORESCENT CHEMODOSIMETER SELECTIVE FOR CU(II) ION IN WATER , 1997 .

[33]  W. Mertz,et al.  Impaired intravenous glucose tolerance as an early sign of dietary necrotic liver degeneration. , 1955, Archives of biochemistry and biophysics.

[34]  G. Ortaggi,et al.  Study of a Convenient Method for the Preparation of Hydrosoluble Fluorescent Triazatruxene Derivatives , 2010 .

[35]  J. Barceló,et al.  Study of aluminum toxicity by means of vital staining profiles in four cultivars of Phaseolus vulgaris L. , 2003, Journal of plant physiology.

[36]  M. Odegard,et al.  Tea, aluminium and Alzheimer's disease. , 1988, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.